ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.12654
  4. Cited By
The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph
  Partitioning
v1v2 (latest)

The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning

25 April 2019
Steffen Wolf
Alberto Bailoni
Constantin Pape
Nasim Rahaman
Anna Kreshuk
Ullrich Kothe
Fred Hamprecht
ArXiv (abs)PDFHTML

Papers citing "The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning"

2 / 2 papers shown
Title
Leveraging Domain Knowledge to Improve Microscopy Image Segmentation
  with Lifted Multicuts
Leveraging Domain Knowledge to Improve Microscopy Image Segmentation with Lifted Multicuts
Constantin Pape
A. Matskevych
A. Wolny
Julian Hennies
Giulia Mizzon
Marion Louveaux
J. Musser
A. Maizel
D. Arendt
Anna Kreshuk
65
20
0
25 May 2019
FusionNet: A deep fully residual convolutional neural network for image
  segmentation in connectomics
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics
Tran Minh Quan
David Grant Colburn Hildebrand
W. Jeong
88
237
0
16 Dec 2016
1