ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.13342
  4. Cited By
PYRO-NN: Python Reconstruction Operators in Neural Networks

PYRO-NN: Python Reconstruction Operators in Neural Networks

30 April 2019
Christopher Syben
Markus Michen
Bernhard Stimpel
Stephan Seitz
Stefan B. Ploner
Andreas K. Maier
    AI4CE
ArXivPDFHTML

Papers citing "PYRO-NN: Python Reconstruction Operators in Neural Networks"

6 / 6 papers shown
Title
Compressibility Analysis for the differentiable shift-variant Filtered Backprojection Model
Chengze Ye
Linda-Sophie Schneider
Yipeng Sun
Mareike Thies
Andreas K. Maier
39
0
0
20 Jan 2025
Optimizing CT Scan Geometries With and Without Gradients
Optimizing CT Scan Geometries With and Without Gradients
Mareike Thies
Fabian Wagner
Noah Maul
Laura Pfaff
Linda-Sophie Schneider
Christopher Syben
Andreas K. Maier
8
1
0
13 Feb 2023
WNet: A data-driven dual-domain denoising model for sparse-view computed
  tomography with a trainable reconstruction layer
WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer
Theodor Cheslerean-Boghiu
Felix C. Hofmann
M. Schultheiss
F. Pfeiffer
Daniela Pfeiffer
Tobias Lasser
MedIm
OOD
25
24
0
01 Jul 2022
Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in
  Computed Tomography
Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in Computed Tomography
Fabian Wagner
Mareike Thies
Mingxuan Gu
Yixing Huang
Sabrina Pechmann
...
O. Aust
S. Uderhardt
G. Schett
S. Christiansen
Andreas K. Maier
MedIm
AI4CE
26
22
0
25 Jan 2022
Vanishing Point Detection with Direct and Transposed Fast Hough
  Transform inside the neural network
Vanishing Point Detection with Direct and Transposed Fast Hough Transform inside the neural network
A. Sheshkus
A. Chirvonaya
D. Matveev
D. Nikolaev
Vladimir L. Arlazarov
8
8
0
04 Feb 2020
Learning with Known Operators reduces Maximum Training Error Bounds
Learning with Known Operators reduces Maximum Training Error Bounds
Andreas K. Maier
Christopher Syben
Bernhard Stimpel
Tobias Würfl
M. Hoffmann
Frank Schebesch
Weilin Fu
L. Mill
L. Kling
S. Christiansen
13
108
0
03 Jul 2019
1