Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.01034
Cited By
Transfer of Adversarial Robustness Between Perturbation Types
3 May 2019
Daniel Kang
Yi Sun
Tom B. Brown
Dan Hendrycks
Jacob Steinhardt
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Transfer of Adversarial Robustness Between Perturbation Types"
22 / 22 papers shown
Title
X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP
Hanxun Huang
Sarah Monazam Erfani
Yige Li
Xingjun Ma
James Bailey
AAML
144
1
0
08 May 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
143
3
0
04 Feb 2025
Estimating the Probabilities of Rare Outputs in Language Models
Gabriel Wu
Jacob Hilton
AAML
UQCV
137
3
0
17 Oct 2024
Towards Universal Certified Robustness with Multi-Norm Training
Enyi Jiang
Gagandeep Singh
Gagandeep Singh
AAML
134
1
0
03 Oct 2024
On Continuity of Robust and Accurate Classifiers
Ramin Barati
Reza Safabakhsh
Mohammad Rahmati
AAML
104
1
0
29 Sep 2023
Regret-Based Defense in Adversarial Reinforcement Learning
Roman Belaire
Pradeep Varakantham
Thanh Nguyen
David Lo
AAML
38
3
0
14 Feb 2023
On the interplay of adversarial robustness and architecture components: patches, convolution and attention
Francesco Croce
Matthias Hein
87
6
0
14 Sep 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
38
19
0
03 Mar 2022
Adversarial Robustness against Multiple and Single
l
p
l_p
l
p
-Threat Models via Quick Fine-Tuning of Robust Classifiers
Francesco Croce
Matthias Hein
OOD
AAML
67
18
0
26 May 2021
Real-time Detection of Practical Universal Adversarial Perturbations
Kenneth T. Co
Luis Muñoz-González
Leslie Kanthan
Emil C. Lupu
AAML
66
7
0
16 May 2021
On the effectiveness of adversarial training against common corruptions
Klim Kireev
Maksym Andriushchenko
Nicolas Flammarion
AAML
72
103
0
03 Mar 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
Bihan Wen
Qian Wang
AAML
190
496
0
02 Feb 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
345
707
0
19 Oct 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
128
549
0
01 Jul 2020
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
86
64
0
16 Jan 2020
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
124
105
0
13 Nov 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
95
96
0
29 Sep 2019
Adversarial Robustness Against the Union of Multiple Perturbation Models
Pratyush Maini
Eric Wong
J. Zico Kolter
OOD
AAML
63
151
0
09 Sep 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
Basel Alomair
OODD
264
1,485
0
16 Jul 2019
Functional Adversarial Attacks
Cassidy Laidlaw
Soheil Feizi
AAML
100
185
0
29 May 2019
Provable robustness against all adversarial
l
p
l_p
l
p
-perturbations for
p
≥
1
p\geq 1
p
≥
1
Francesco Croce
Matthias Hein
OOD
75
75
0
27 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
96
380
0
30 Apr 2019
1