Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.01537
Cited By
Hierarchical Policy Learning is Sensitive to Goal Space Design
4 May 2019
Zach Dwiel
Madhavun Candadai
Mariano Phielipp
Arjun K. Bansal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hierarchical Policy Learning is Sensitive to Goal Space Design"
7 / 7 papers shown
Title
CORD: Generalizable Cooperation via Role Diversity
Kanefumi Matsuyama
Kefan Su
Jiangxing Wang
Deheng Ye
Zongqing Lu
40
0
0
04 Jan 2025
Adaptive trajectory-constrained exploration strategy for deep reinforcement learning
Guojian Wang
Faguo Wu
Xiao Zhang
Ning Guo
Zhiming Zheng
33
3
0
27 Dec 2023
E-MAPP: Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance
C. Chang
Ni Mu
Jiajun Wu
Ling Pan
Huazhe Xu
50
7
0
05 Dec 2022
Discrete Factorial Representations as an Abstraction for Goal Conditioned Reinforcement Learning
Riashat Islam
Hongyu Zang
Anirudh Goyal
Alex Lamb
Kenji Kawaguchi
Xin-hui Li
Romain Laroche
Yoshua Bengio
Rémi Tachet des Combes
OffRL
AI4CE
23
9
0
01 Nov 2022
Self-supervised Reinforcement Learning with Independently Controllable Subgoals
Andrii Zadaianchuk
Georg Martius
Fanny Yang
SSL
64
16
0
09 Sep 2021
Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning with Intrinsic-Extrinsic Modeling
Xin Ye
Yezhou Yang
22
14
0
16 Oct 2020
RODE: Learning Roles to Decompose Multi-Agent Tasks
Tonghan Wang
Tarun Gupta
Anuj Mahajan
Bei Peng
Shimon Whiteson
Chongjie Zhang
OffRL
30
39
0
04 Oct 2020
1