ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03329
  4. Cited By
Learning Embeddings into Entropic Wasserstein Spaces

Learning Embeddings into Entropic Wasserstein Spaces

8 May 2019
Charlie Frogner
F. Mirzazadeh
Justin Solomon
ArXiv (abs)PDFHTML

Papers citing "Learning Embeddings into Entropic Wasserstein Spaces"

11 / 11 papers shown
Title
Bispectral OT: Dataset Comparison using Symmetry-Aware Optimal Transport
Bispectral OT: Dataset Comparison using Symmetry-Aware Optimal Transport
Annabel Ma
Kaiying Hou
David Alvarez-Melis
Melanie Weber
OT
4
0
0
25 Sep 2025
Policy Search, Retrieval, and Composition via Task Similarity in Collaborative Agentic Systems
Policy Search, Retrieval, and Composition via Task Similarity in Collaborative Agentic Systems
Saptarshi Nath
Christos Peridis
Eseoghene Benjamin
Hengrong Du
Soheil Kolouri
Peter Kinnell
Zexin Li
Cong Liu
Shirin Dora
Andrea Soltoggio
118
0
0
05 Jun 2025
Explaining Graph Neural Networks for Node Similarity on Graphs
Explaining Graph Neural Networks for Node Similarity on Graphs
Daniel Daza
C. Chu
T. Tran
Daria Stepanova
Michael Cochez
Paul T. Groth
102
1
0
10 Jul 2024
Wasserstein-Fisher-Rao Embedding: Logical Query Embeddings with Local
  Comparison and Global Transport
Wasserstein-Fisher-Rao Embedding: Logical Query Embeddings with Local Comparison and Global Transport
Zihao Wang
Weizhi Fei
hang Yin
Yangqiu Song
Ginny Wong
Simon See
109
21
0
06 May 2023
Neural Embedding: Learning the Embedding of the Manifold of Physics Data
Neural Embedding: Learning the Embedding of the Manifold of Physics Data
Sang Eon Park
Philip C. Harris
B. Ostdiek
PINNDRLAI4CE
140
19
0
10 Aug 2022
Selecting task with optimal transport self-supervised learning for
  few-shot classification
Selecting task with optimal transport self-supervised learning for few-shot classification
Renjie Xu
Xinghao Yang
Baodi Liu
Kai Zhang
Weifeng Liu
OTOODD
121
2
0
01 Apr 2022
Towards Interpretable Deep Metric Learning with Structural Matching
Towards Interpretable Deep Metric Learning with Structural Matching
Wenliang Zhao
Yongming Rao
Ziyi Wang
Jiwen Lu
Jie Zhou
FedML
115
48
0
12 Aug 2021
Re-evaluating Word Mover's Distance
Re-evaluating Word Mover's Distance
Ryoma Sato
M. Yamada
H. Kashima
171
24
0
30 May 2021
Learning to Generate Wasserstein Barycenters
Learning to Generate Wasserstein Barycenters
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
99
12
0
24 Feb 2021
Permutation invariant networks to learn Wasserstein metrics
Permutation invariant networks to learn Wasserstein metrics
Arijit Sehanobish
N. Ravindra
David van Dijk
OOD
85
2
0
12 Oct 2020
Geometric Dataset Distances via Optimal Transport
Geometric Dataset Distances via Optimal TransportNeural Information Processing Systems (NeurIPS), 2025
David Alvarez-Melis
Nicolò Fusi
OT
179
220
0
07 Feb 2020
1