ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.04346
  4. Cited By
On the Computation and Communication Complexity of Parallel SGD with
  Dynamic Batch Sizes for Stochastic Non-Convex Optimization

On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

10 May 2019
Hao Yu
R. L. Jin
ArXivPDFHTML

Papers citing "On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization"

9 / 9 papers shown
Title
FedBIAD: Communication-Efficient and Accuracy-Guaranteed Federated
  Learning with Bayesian Inference-Based Adaptive Dropout
FedBIAD: Communication-Efficient and Accuracy-Guaranteed Federated Learning with Bayesian Inference-Based Adaptive Dropout
Jingjing Xue
Min Liu
Sheng Sun
Yuwei Wang
Hui Jiang
Xue Jiang
18
7
0
14 Jul 2023
Taming Resource Heterogeneity In Distributed ML Training With Dynamic
  Batching
Taming Resource Heterogeneity In Distributed ML Training With Dynamic Batching
S. Tyagi
Prateek Sharma
16
22
0
20 May 2023
What Do We Mean by Generalization in Federated Learning?
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
35
71
0
27 Oct 2021
Federated Composite Optimization
Federated Composite Optimization
Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
FedML
29
58
0
17 Nov 2020
Hogwild! over Distributed Local Data Sets with Linearly Increasing
  Mini-Batch Sizes
Hogwild! over Distributed Local Data Sets with Linearly Increasing Mini-Batch Sizes
Marten van Dijk
Nhuong V. Nguyen
Toan N. Nguyen
Lam M. Nguyen
Quoc Tran-Dinh
Phuong Ha Nguyen
FedML
34
10
0
27 Oct 2020
Distributed Non-Convex Optimization with Sublinear Speedup under
  Intermittent Client Availability
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
36
37
0
18 Feb 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
124
259
0
10 Dec 2012
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
171
683
0
07 Dec 2010
1