ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.04720
  4. Cited By
Rotation Invariant Householder Parameterization for Bayesian PCA

Rotation Invariant Householder Parameterization for Bayesian PCA

12 May 2019
Rajbir-Singh Nirwan
Nils Bertschinger
ArXiv (abs)PDFHTML

Papers citing "Rotation Invariant Householder Parameterization for Bayesian PCA"

3 / 3 papers shown
Title
Parameterizations for Gradient-based Markov Chain Monte Carlo on the
  Stiefel Manifold: A Comparative Study
Parameterizations for Gradient-based Markov Chain Monte Carlo on the Stiefel Manifold: A Comparative Study
Masahiro Tanaka
79
1
0
12 Feb 2024
A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method
  using Gaussian Processes
A Fully Bayesian Gradient-Free Supervised Dimension Reduction Method using Gaussian Processes
Raphael Gautier
Piyush Pandita
Sayan Ghosh
D. Mavris
29
3
0
08 Aug 2020
Vanishing Nodes: Another Phenomenon That Makes Training Deep Neural
  Networks Difficult
Vanishing Nodes: Another Phenomenon That Makes Training Deep Neural Networks Difficult
Wen-Yu Chang
Tsung-Nan Lin
GNN
59
0
0
22 Oct 2019
1