ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07645
  4. Cited By
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching

Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching

18 May 2019
Hongteng Xu
Dixin Luo
Lawrence Carin
ArXivPDFHTML

Papers citing "Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching"

32 / 32 papers shown
Title
THESAURUS: Contrastive Graph Clustering by Swapping Fused Gromov-Wasserstein Couplings
THESAURUS: Contrastive Graph Clustering by Swapping Fused Gromov-Wasserstein Couplings
Bowen Deng
Tong Wang
Lele Fu
Sheng Huang
Chuan Chen
Tao Zhang
82
0
0
17 Feb 2025
AMOSL: Adaptive Modality-wise Structure Learning in Multi-view Graph
  Neural Networks For Enhanced Unified Representation
AMOSL: Adaptive Modality-wise Structure Learning in Multi-view Graph Neural Networks For Enhanced Unified Representation
Peiyu Liang
Hongchang Gao
Xubin He
30
0
0
04 Jun 2024
Spurious Stationarity and Hardness Results for Mirror Descent
Spurious Stationarity and Hardness Results for Mirror Descent
He Chen
Jiajin Li
Anthony Man-Cho So
39
0
0
11 Apr 2024
Distributional Reduction: Unifying Dimensionality Reduction and
  Clustering with Gromov-Wasserstein
Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein
Hugues van Assel
Cédric Vincent-Cuaz
Nicolas Courty
Rémi Flamary
Pascal Frossard
Titouan Vayer
26
3
0
03 Feb 2024
Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport
  Framework
Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport Framework
Haoran Cheng
Dixin Luo
Hongteng Xu
OT
16
0
0
18 Oct 2023
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Combating Confirmation Bias: A Unified Pseudo-Labeling Framework for Entity Alignment
Qijie Ding
Jie Yin
Daokun Zhang
Junbin Gao
56
4
0
05 Jul 2023
Robust Attributed Graph Alignment via Joint Structure Learning and
  Optimal Transport
Robust Attributed Graph Alignment via Joint Structure Learning and Optimal Transport
Jianheng Tang
Weiqi Zhang
Jiajin Li
Kangfei Zhao
Fugee Tsung
Jia Li
OT
13
18
0
30 Jan 2023
Regularized Optimal Transport Layers for Generalized Global Pooling
  Operations
Regularized Optimal Transport Layers for Generalized Global Pooling Operations
Hongteng Xu
Minjie Cheng
36
4
0
13 Dec 2022
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
Implicit Graphon Neural Representation
Implicit Graphon Neural Representation
Xinyue Xia
Gal Mishne
Yusu Wang
GNN
AI4CE
34
4
0
07 Nov 2022
Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity
  of Neural Networks
Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
A. K. Akash
Sixu Li
Nicolas García Trillos
24
12
0
13 Oct 2022
Hybrid Gromov-Wasserstein Embedding for Capsule Learning
Hybrid Gromov-Wasserstein Embedding for Capsule Learning
Pourya Shamsolmoali
Masoumeh Zareapoor
Swagatam Das
Eric Granger
Salvador García
MedIm
24
2
0
01 Sep 2022
Efficient Approximation of Gromov-Wasserstein Distance Using Importance
  Sparsification
Efficient Approximation of Gromov-Wasserstein Distance Using Importance Sparsification
Mengyu Li
Jun Yu
Hongteng Xu
Cheng Meng
26
13
0
26 May 2022
Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph
  Data
Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph Data
Jiajin Li
Jianheng Tang
Lemin Kong
Huikang Liu
Jia Li
Anthony Man-Cho So
Jose H. Blanchet
36
1
0
17 May 2022
Seeded graph matching for the correlated Gaussian Wigner model via the
  projected power method
Seeded graph matching for the correlated Gaussian Wigner model via the projected power method
E. Araya
Guillaume Braun
Hemant Tyagi
80
4
0
08 Apr 2022
An Accelerated Stochastic Algorithm for Solving the Optimal Transport
  Problem
An Accelerated Stochastic Algorithm for Solving the Optimal Transport Problem
Yiling Xie
Yiling Luo
X. Huo
16
10
0
02 Mar 2022
Graph Auto-Encoder Via Neighborhood Wasserstein Reconstruction
Graph Auto-Encoder Via Neighborhood Wasserstein Reconstruction
Mingyue Tang
Carl Yang
Pan Li
GNN
AI4CE
41
55
0
18 Feb 2022
CLIP-Event: Connecting Text and Images with Event Structures
CLIP-Event: Connecting Text and Images with Event Structures
Manling Li
Ruochen Xu
Shuohang Wang
Luowei Zhou
Xudong Lin
Chenguang Zhu
Michael Zeng
Heng Ji
Shih-Fu Chang
VLM
CLIP
10
123
0
13 Jan 2022
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
35
23
0
06 Oct 2021
Entropic Gromov-Wasserstein between Gaussian Distributions
Entropic Gromov-Wasserstein between Gaussian Distributions
Khang Le
Dung D. Le
Huy Nguyen
Dat Do
Tung Pham
Nhat Ho
OT
13
18
0
24 Aug 2021
Estimation of Stationary Optimal Transport Plans
Estimation of Stationary Optimal Transport Plans
Kevin O'Connor
K. Mcgoff
A. Nobel
OT
16
3
0
25 Jul 2021
Sliced Multi-Marginal Optimal Transport
Sliced Multi-Marginal Optimal Transport
Samuel N. Cohen
Alexander Terenin
Yannik Pitcan
Brandon Amos
M. Deisenroth
K. S. S. Kumar
OT
13
8
0
14 Feb 2021
On Robust Optimal Transport: Computational Complexity and Barycenter
  Computation
On Robust Optimal Transport: Computational Complexity and Barycenter Computation
Khang Le
Huy Le Nguyen
Quang H. Nguyen
Tung Pham
Hung Bui
Nhat Ho
OT
23
37
0
13 Feb 2021
Image-to-Image Retrieval by Learning Similarity between Scene Graphs
Image-to-Image Retrieval by Learning Similarity between Scene Graphs
Sangwoong Yoon
Woo-Young Kang
Sungwook Jeon
SeongEun Lee
C. Han
Jonghun Park
Eun-Sol Kim
3DH
29
39
0
29 Dec 2020
Graph Neural Networks: Taxonomy, Advances and Trends
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Hongteng Xu
Dixin Luo
Lawrence Carin
H. Zha
46
28
0
10 Dec 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
  Relaxation
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
19
67
0
09 Sep 2020
Generalized Spectral Clustering via Gromov-Wasserstein Learning
Generalized Spectral Clustering via Gromov-Wasserstein Learning
Samir Chowdhury
Tom Needham
11
54
0
07 Jun 2020
COPT: Coordinated Optimal Transport for Graph Sketching
COPT: Coordinated Optimal Transport for Graph Sketching
Yihe Dong
W. Sawin
OT
41
26
0
09 Mar 2020
Deep Graph Matching Consensus
Deep Graph Matching Consensus
Matthias Fey
J. E. Lenssen
Christopher Morris
Jonathan Masci
Nils M. Kriege
24
207
0
27 Jan 2020
Gromov-Wasserstein Factorization Models for Graph Clustering
Gromov-Wasserstein Factorization Models for Graph Clustering
Hongteng Xu
14
48
0
19 Nov 2019
Gromov-Wasserstein Averaging in a Riemannian Framework
Gromov-Wasserstein Averaging in a Riemannian Framework
Samir Chowdhury
Tom Needham
16
36
0
10 Oct 2019
1