ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07857
  4. Cited By
CERTIFAI: Counterfactual Explanations for Robustness, Transparency,
  Interpretability, and Fairness of Artificial Intelligence models

CERTIFAI: Counterfactual Explanations for Robustness, Transparency, Interpretability, and Fairness of Artificial Intelligence models

20 May 2019
Shubham Sharma
Jette Henderson
Joydeep Ghosh
ArXivPDFHTML

Papers citing "CERTIFAI: Counterfactual Explanations for Robustness, Transparency, Interpretability, and Fairness of Artificial Intelligence models"

15 / 15 papers shown
Title
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
86
16
0
10 Jan 2025
ALMANACS: A Simulatability Benchmark for Language Model Explainability
ALMANACS: A Simulatability Benchmark for Language Model Explainability
Edmund Mills
Shiye Su
Stuart J. Russell
Scott Emmons
56
7
0
20 Dec 2023
Redefining Counterfactual Explanations for Reinforcement Learning:
  Overview, Challenges and Opportunities
Redefining Counterfactual Explanations for Reinforcement Learning: Overview, Challenges and Opportunities
Jasmina Gajcin
Ivana Dusparic
CML
OffRL
47
8
0
21 Oct 2022
Robust Counterfactual Explanations for Tree-Based Ensembles
Robust Counterfactual Explanations for Tree-Based Ensembles
Sanghamitra Dutta
Jason Long
Saumitra Mishra
Cecilia Tilli
Daniele Magazzeni
23
52
0
06 Jul 2022
Causal Explanations and XAI
Causal Explanations and XAI
Sander Beckers
CML
XAI
33
35
0
31 Jan 2022
A Framework and Benchmarking Study for Counterfactual Generating Methods
  on Tabular Data
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
40
33
0
09 Jul 2021
How Well do Feature Visualizations Support Causal Understanding of CNN
  Activations?
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
Roland S. Zimmermann
Judy Borowski
Robert Geirhos
Matthias Bethge
Thomas S. A. Wallis
Wieland Brendel
FAtt
49
31
0
23 Jun 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to
  Rectify in the Evaluation of Counterfactual XAI Techniques
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
32
146
0
26 Feb 2021
MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning
  Models on MIMIC-IV Dataset
MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset
Chuizheng Meng
Loc Trinh
Nan Xu
Yan Liu
24
30
0
12 Feb 2021
Why model why? Assessing the strengths and limitations of LIME
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
28
164
0
20 Oct 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
46
62
0
11 Sep 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
37
19
0
26 Jun 2020
On the computation of counterfactual explanations -- A survey
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
30
50
0
15 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
44
6,139
0
22 Oct 2019
1