ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.09113
  4. Cited By
A Comprehensive Study of ImageNet Pre-Training for Historical Document
  Image Analysis

A Comprehensive Study of ImageNet Pre-Training for Historical Document Image Analysis

22 May 2019
Linda Studer
Michele Alberti
Vinaychandran Pondenkandath
Pinar Goktepe
Thomas Kolonko
Andreas Fischer
Marcus Liwicki
Rolf Ingold
    VLM
ArXivPDFHTML

Papers citing "A Comprehensive Study of ImageNet Pre-Training for Historical Document Image Analysis"

4 / 4 papers shown
Title
dlordinal: a Python package for deep ordinal classification
dlordinal: a Python package for deep ordinal classification
Francisco Bérchez-Moreno
V. M. Vargas
Rafael Ayllón-Gavilán
David Guijo Rubio
César Hervás-Martinez
J. C. Fernández
Pedro Antonio Gutiérrez
26
0
0
24 Jul 2024
Automated Cleanup of the ImageNet Dataset by Model Consensus,
  Explainability and Confident Learning
Automated Cleanup of the ImageNet Dataset by Model Consensus, Explainability and Confident Learning
Csaba Kertész
VLM
SSL
23
45
0
30 Mar 2021
Generating Synthetic Handwritten Historical Documents With OCR
  Constrained GANs
Generating Synthetic Handwritten Historical Documents With OCR Constrained GANs
Lars Vogtlin
Manuel Drazyk
Vinaychandran Pondenkandath
Michele Alberti
Rolf Ingold
16
12
0
15 Mar 2021
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust
  Semantic Pixel-Wise Labelling
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
Vijay Badrinarayanan
Ankur Handa
R. Cipolla
SSeg
161
792
0
27 May 2015
1