Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.09113
Cited By
A Comprehensive Study of ImageNet Pre-Training for Historical Document Image Analysis
22 May 2019
Linda Studer
Michele Alberti
Vinaychandran Pondenkandath
Pinar Goktepe
Thomas Kolonko
Andreas Fischer
Marcus Liwicki
Rolf Ingold
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Comprehensive Study of ImageNet Pre-Training for Historical Document Image Analysis"
4 / 4 papers shown
Title
dlordinal: a Python package for deep ordinal classification
Francisco Bérchez-Moreno
V. M. Vargas
Rafael Ayllón-Gavilán
David Guijo Rubio
César Hervás-Martinez
J. C. Fernández
Pedro Antonio Gutiérrez
26
0
0
24 Jul 2024
Automated Cleanup of the ImageNet Dataset by Model Consensus, Explainability and Confident Learning
Csaba Kertész
VLM
SSL
23
45
0
30 Mar 2021
Generating Synthetic Handwritten Historical Documents With OCR Constrained GANs
Lars Vogtlin
Manuel Drazyk
Vinaychandran Pondenkandath
Michele Alberti
Rolf Ingold
16
12
0
15 Mar 2021
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
Vijay Badrinarayanan
Ankur Handa
R. Cipolla
SSeg
161
792
0
27 May 2015
1