ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10337
  4. Cited By
What Can ResNet Learn Efficiently, Going Beyond Kernels?

What Can ResNet Learn Efficiently, Going Beyond Kernels?

24 May 2019
Zeyuan Allen-Zhu
Yuanzhi Li
ArXivPDFHTML

Papers citing "What Can ResNet Learn Efficiently, Going Beyond Kernels?"

28 / 28 papers shown
Title
Aggregate, Decompose, and Fine-Tune: A Simple Yet Effective
  Factor-Tuning Method for Vision Transformer
Aggregate, Decompose, and Fine-Tune: A Simple Yet Effective Factor-Tuning Method for Vision Transformer
Dongping Chen
33
3
0
12 Nov 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
36
13
0
11 May 2023
A Theoretical Understanding of Shallow Vision Transformers: Learning,
  Generalization, and Sample Complexity
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity
Hongkang Li
M. Wang
Sijia Liu
Pin-Yu Chen
ViT
MLT
35
56
0
12 Feb 2023
The Curious Case of Benign Memorization
The Curious Case of Benign Memorization
Sotiris Anagnostidis
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
AAML
39
8
0
25 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
18
5
0
20 Oct 2022
Towards Understanding Mixture of Experts in Deep Learning
Towards Understanding Mixture of Experts in Deep Learning
Zixiang Chen
Yihe Deng
Yue-bo Wu
Quanquan Gu
Yuan-Fang Li
MLT
MoE
27
53
0
04 Aug 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the
  Computational Limit
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
25
123
0
18 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
112
0
30 Jun 2022
Identifying good directions to escape the NTK regime and efficiently
  learn low-degree plus sparse polynomials
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
21
10
0
08 Jun 2022
The Mechanism of Prediction Head in Non-contrastive Self-supervised
  Learning
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Zixin Wen
Yuanzhi Li
SSL
24
34
0
12 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step
  Improves the Representation
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
29
121
0
03 May 2022
Random Feature Amplification: Feature Learning and Generalization in
  Neural Networks
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
On the Global Convergence of Gradient Descent for multi-layer ResNets in
  the mean-field regime
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
30
11
0
06 Oct 2021
Understanding the Generalization of Adam in Learning Neural Networks
  with Proper Regularization
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
39
37
0
25 Aug 2021
What can linearized neural networks actually say about generalization?
What can linearized neural networks actually say about generalization?
Guillermo Ortiz-Jiménez
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
21
43
0
12 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
26
24
0
11 Jun 2021
Toward Understanding the Feature Learning Process of Self-supervised
  Contrastive Learning
Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
Zixin Wen
Yuanzhi Li
SSL
MLT
18
131
0
31 May 2021
The Connection Between Approximation, Depth Separation and Learnability
  in Neural Networks
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
11
20
0
31 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and
  Self-Distillation in Deep Learning
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
11
354
0
17 Dec 2020
Deep Networks and the Multiple Manifold Problem
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang
C. Pehlevan
11
13
0
30 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
26
32
0
18 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep
  Learning
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable
  Optimization Via Overparameterization From Depth
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
31
78
0
11 Mar 2020
Learning Parities with Neural Networks
Learning Parities with Neural Networks
Amit Daniely
Eran Malach
13
76
0
18 Feb 2020
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
18
214
0
03 Dec 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of
  Wide Neural Networks
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
11
116
0
03 Oct 2019
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
114
577
0
27 Feb 2015
1