Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1905.10389
Cited By
v1
v2 (latest)
Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
International Conference on Machine Learning (ICML), 2019
24 May 2019
Lin F. Yang
Mengdi Wang
OffRL
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound"
50 / 226 papers shown
Title
Provable Representation Learning for Imitation with Contrastive Fourier Features
Neural Information Processing Systems (NeurIPS), 2021
Ofir Nachum
Mengjiao Yang
SSL
OffRL
245
39
0
26 May 2021
Sublinear Least-Squares Value Iteration via Locality Sensitive Hashing
Anshumali Shrivastava
Zhao Song
Zhaozhuo Xu
140
22
0
18 May 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Neural Information Processing Systems (NeurIPS), 2021
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
260
30
0
17 May 2021
Regret Bounds for Stochastic Shortest Path Problems with Linear Function Approximation
International Conference on Machine Learning (ICML), 2021
Daniel Vial
Advait Parulekar
Sanjay Shakkottai
R. Srikant
279
17
0
04 May 2021
An
L
2
L^2
L
2
Analysis of Reinforcement Learning in High Dimensions with Kernel and Neural Network Approximation
CSIAM Transactions on Applied Mathematics (CSIAM Trans. Appl. Math.), 2021
Jihao Long
Jiequn Han null
Weinan E
OffRL
171
15
0
15 Apr 2021
Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation
Annual Conference Computational Learning Theory (COLT), 2021
Andrea Zanette
Ching-An Cheng
Alekh Agarwal
300
56
0
24 Mar 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Neural Information Processing Systems (NeurIPS), 2021
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
392
47
0
23 Mar 2021
Provably Correct Optimization and Exploration with Non-linear Policies
International Conference on Machine Learning (ICML), 2021
Fei Feng
W. Yin
Alekh Agarwal
Lin F. Yang
230
13
0
22 Mar 2021
Dynamic Pricing and Learning under the Bass Model
ACM Conference on Economics and Computation (EC), 2021
Shipra Agrawal
Steven Yin
A. Zeevi
195
12
0
09 Mar 2021
Provably Efficient Cooperative Multi-Agent Reinforcement Learning with Function Approximation
Abhimanyu Dubey
Alex Pentland
171
27
0
08 Mar 2021
MobILE: Model-Based Imitation Learning From Observation Alone
Neural Information Processing Systems (NeurIPS), 2021
Rahul Kidambi
Jonathan D. Chang
Wen Sun
201
42
0
22 Feb 2021
Near-optimal Policy Optimization Algorithms for Learning Adversarial Linear Mixture MDPs
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Jiafan He
Dongruo Zhou
Quanquan Gu
253
26
0
17 Feb 2021
Almost Optimal Algorithms for Two-player Zero-Sum Linear Mixture Markov Games
International Conference on Algorithmic Learning Theory (ALT), 2021
Zixiang Chen
Dongruo Zhou
Quanquan Gu
146
28
0
15 Feb 2021
Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Yue Wu
Dongruo Zhou
Quanquan Gu
149
22
0
15 Feb 2021
Model-free Representation Learning and Exploration in Low-rank MDPs
Journal of machine learning research (JMLR), 2021
Aditya Modi
Jinglin Chen
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
OffRL
303
85
0
14 Feb 2021
Robust Policy Gradient against Strong Data Corruption
International Conference on Machine Learning (ICML), 2021
Xuezhou Zhang
Yiding Chen
Xiaojin Zhu
Wen Sun
AAML
282
42
0
11 Feb 2021
Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve Optimism, Embrace Virtual Curvature
Neural Information Processing Systems (NeurIPS), 2021
Kefan Dong
Jiaqi Yang
Tengyu Ma
483
37
0
08 Feb 2021
Near-optimal Representation Learning for Linear Bandits and Linear RL
International Conference on Machine Learning (ICML), 2021
Jiachen Hu
Xiaoyu Chen
Chi Jin
Lihong Li
Liwei Wang
OffRL
229
57
0
08 Feb 2021
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2021
Theodore H. Moskovitz
Jack Parker-Holder
Aldo Pacchiano
Michael Arbel
Sai Li
291
69
0
07 Feb 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Neural Information Processing Systems (NeurIPS), 2021
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
302
46
0
29 Jan 2021
Breaking the Deadly Triad with a Target Network
International Conference on Machine Learning (ICML), 2021
Shangtong Zhang
Hengshuai Yao
Shimon Whiteson
AAML
652
55
0
21 Jan 2021
A Provably Efficient Algorithm for Linear Markov Decision Process with Low Switching Cost
Minbo Gao
Tianle Xie
S. Du
Lin F. Yang
171
51
0
02 Jan 2021
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes
Annual Conference Computational Learning Theory (COLT), 2020
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
258
225
0
15 Dec 2020
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
International Conference on Machine Learning (ICML), 2020
Andrea Zanette
OffRL
659
74
0
14 Dec 2020
Regret Bounds for Adaptive Nonlinear Control
Conference on Learning for Dynamics & Control (L4DC), 2020
Nicholas M. Boffi
Stephen Tu
Jean-Jacques E. Slotine
238
50
0
26 Nov 2020
Logarithmic Regret for Reinforcement Learning with Linear Function Approximation
International Conference on Machine Learning (ICML), 2020
Jiafan He
Dongruo Zhou
Quanquan Gu
196
106
0
23 Nov 2020
Model-based Reinforcement Learning for Continuous Control with Posterior Sampling
International Conference on Machine Learning (ICML), 2020
Ying Fan
Yifei Ming
291
21
0
20 Nov 2020
Online Model Selection for Reinforcement Learning with Function Approximation
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Jonathan Lee
Aldo Pacchiano
Vidya Muthukumar
Weihao Kong
Emma Brunskill
OffRL
205
37
0
19 Nov 2020
Value Function Approximations via Kernel Embeddings for No-Regret Reinforcement Learning
Asian Conference on Machine Learning (ACML), 2020
Sayak Ray Chowdhury
Rafael Oliveira
OffRL
272
5
0
16 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Sai Li
180
18
0
09 Nov 2020
Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient
Botao Hao
Yaqi Duan
Tor Lattimore
Csaba Szepesvári
Mengdi Wang
OffRL
289
29
0
08 Nov 2020
Online Sparse Reinforcement Learning
Botao Hao
Tor Lattimore
Csaba Szepesvári
Mengdi Wang
OffRL
591
30
0
08 Nov 2020
Episodic Linear Quadratic Regulators with Low-rank Transitions
Tianyu Wang
Lin F. Yang
154
3
0
03 Nov 2020
Efficient Learning in Non-Stationary Linear Markov Decision Processes
Ahmed Touati
Pascal Vincent
235
30
0
24 Oct 2020
Improved Worst-Case Regret Bounds for Randomized Least-Squares Value Iteration
Priyank Agrawal
Jinglin Chen
Nan Jiang
294
22
0
23 Oct 2020
Is Plug-in Solver Sample-Efficient for Feature-based Reinforcement Learning?
Qiwen Cui
Lin F. Yang
OffRL
161
14
0
12 Oct 2020
Randomized Value Functions via Posterior State-Abstraction Sampling
Dilip Arumugam
Benjamin Van Roy
OffRL
280
7
0
05 Oct 2020
Neural Thompson Sampling
International Conference on Learning Representations (ICLR), 2020
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
254
139
0
02 Oct 2020
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration
Andrea Zanette
A. Lazaric
Mykel J. Kochenderfer
Emma Brunskill
179
65
0
18 Aug 2020
Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Chen-Yu Wei
Mehdi Jafarnia-Jahromi
Haipeng Luo
Rahul Jain
270
51
0
23 Jul 2020
PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning
Neural Information Processing Systems (NeurIPS), 2020
Alekh Agarwal
Mikael Henaff
Sham Kakade
Wen Sun
OffRL
230
119
0
16 Jul 2020
A Unifying View of Optimism in Episodic Reinforcement Learning
Gergely Neu
Ciara Pike-Burke
151
74
0
03 Jul 2020
Online learning in MDPs with linear function approximation and bandit feedback
Gergely Neu
Julia Olkhovskaya
229
36
0
03 Jul 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
International Conference on Machine Learning (ICML), 2020
Dongruo Zhou
Jiafan He
Quanquan Gu
317
141
0
23 Jun 2020
Provably Efficient Causal Reinforcement Learning with Confounded Observational Data
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
OffRL
160
55
0
22 Jun 2020
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal
Sham Kakade
A. Krishnamurthy
Wen Sun
OffRL
418
246
0
18 Jun 2020
A maximum-entropy approach to off-policy evaluation in average-reward MDPs
N. Lazić
Dong Yin
Mehrdad Farajtabar
Nir Levine
Dilan Görür
Chris Harris
Dale Schuurmans
OffRL
179
12
0
17 Jun 2020
Zeroth-order Deterministic Policy Gradient
Harshat Kumar
Dionysios S. Kalogerias
George J. Pappas
Alejandro Ribeiro
OffRL
147
14
0
12 Jun 2020
Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation
Neural Information Processing Systems (NeurIPS), 2020
Devavrat Shah
Dogyoon Song
Zhi Xu
Yuzhe Yang
279
34
0
11 Jun 2020
Model-Based Reinforcement Learning with Value-Targeted Regression
Conference on Learning for Dynamics & Control (L4DC), 2020
Alex Ayoub
Zeyu Jia
Csaba Szepesvári
Mengdi Wang
Lin F. Yang
OffRL
278
313
0
01 Jun 2020
Previous
1
2
3
4
5
Next