Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.10988
Cited By
Natural Compression for Distributed Deep Learning
27 May 2019
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Natural Compression for Distributed Deep Learning"
25 / 25 papers shown
Title
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
43
0
0
11 Mar 2025
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
A. Maranjyan
Peter Richtárik
39
3
0
07 Mar 2024
Correlated Quantization for Faster Nonconvex Distributed Optimization
Andrei Panferov
Yury Demidovich
Ahmad Rammal
Peter Richtárik
MQ
25
4
0
10 Jan 2024
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
35
5
0
15 Oct 2023
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
65
4
0
01 Aug 2023
A Survey From Distributed Machine Learning to Distributed Deep Learning
Mohammad Dehghani
Zahra Yazdanparast
15
0
0
11 Jul 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
21
6
0
08 Mar 2023
Does Federated Learning Really Need Backpropagation?
H. Feng
Tianyu Pang
Chao Du
Wei-Neng Chen
Shuicheng Yan
Min-Bin Lin
FedML
26
10
0
28 Jan 2023
Joint Privacy Enhancement and Quantization in Federated Learning
Natalie Lang
Elad Sofer
Tomer Shaked
Nir Shlezinger
FedML
27
46
0
23 Aug 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
16
10
0
08 May 2022
TOFU: Towards Obfuscated Federated Updates by Encoding Weight Updates into Gradients from Proxy Data
Isha Garg
M. Nagaraj
Kaushik Roy
FedML
13
1
0
21 Jan 2022
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
22
14
0
01 Nov 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
44
44
0
07 Oct 2021
Communication-Efficient Federated Learning with Binary Neural Networks
YuZhi Yang
Zhaoyang Zhang
Qianqian Yang
FedML
16
31
0
05 Oct 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
Distributed Learning in Wireless Networks: Recent Progress and Future Challenges
Mingzhe Chen
Deniz Gündüz
Kaibin Huang
Walid Saad
M. Bennis
Aneta Vulgarakis Feljan
H. Vincent Poor
21
401
0
05 Apr 2021
Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices
Max Ryabinin
Eduard A. Gorbunov
Vsevolod Plokhotnyuk
Gennady Pekhimenko
27
31
0
04 Mar 2021
On the Utility of Gradient Compression in Distributed Training Systems
Saurabh Agarwal
Hongyi Wang
Shivaram Venkataraman
Dimitris Papailiopoulos
23
46
0
28 Feb 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
28
108
0
15 Feb 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
19
51
0
14 Feb 2021
Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li
D. Kovalev
Xun Qian
Peter Richtárik
FedML
AI4CE
13
133
0
26 Feb 2020
Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor
M. Safaryan
Egor Shulgin
Peter Richtárik
24
60
0
20 Feb 2020
On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for Distributed Deep Learning
Aritra Dutta
El Houcine Bergou
A. Abdelmoniem
Chen-Yu Ho
Atal Narayan Sahu
Marco Canini
Panos Kalnis
22
76
0
19 Nov 2019
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
11
67
0
23 Oct 2019
1