Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1905.11546
Cited By
Distributed estimation of the inverse Hessian by determinantal averaging
Neural Information Processing Systems (NeurIPS), 2019
28 May 2019
Michal Derezinski
Michael W. Mahoney
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Distributed estimation of the inverse Hessian by determinantal averaging"
23 / 23 papers shown
Title
pFedSOP : Accelerating Training Of Personalized Federated Learning Using Second-Order Optimization
Mrinmay Sen
C Krishna Mohan
159
0
0
08 Jun 2025
Accelerated Training of Federated Learning via Second-Order Methods
Mrinmay Sen
Sidhant R Nair
C Krishna Mohan
FedML
195
0
0
29 May 2025
Newton Meets Marchenko-Pastur: Massively Parallel Second-Order Optimization with Hessian Sketching and Debiasing
International Conference on Learning Representations (ICLR), 2024
Elad Romanov
Fangzhao Zhang
Mert Pilanci
142
1
0
02 Oct 2024
Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning
Michał Dereziński
Michael W. Mahoney
240
18
0
17 Jun 2024
Stochastic Newton Proximal Extragradient Method
Ruichen Jiang
Michal Dereziñski
Aryan Mokhtari
92
0
0
03 Jun 2024
Distributed Least Squares in Small Space via Sketching and Bias Reduction
Neural Information Processing Systems (NeurIPS), 2024
Sachin Garg
Kevin Tan
Michal Dereziñski
162
2
0
08 May 2024
FAGH: Accelerating Federated Learning with Approximated Global Hessian
Mrinmay Sen
A. K. Qin
Krishna Mohan
FedML
211
1
0
16 Mar 2024
FedSSO: A Federated Server-Side Second-Order Optimization Algorithm
Xinteng Ma
Renyi Bao
Jinpeng Jiang
Yang Liu
Arthur Jiang
Junhua Yan
Xin Liu
Zhisong Pan
FedML
227
8
0
20 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
311
11
0
06 Jun 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Mathematical programming (Math. Program.), 2022
Sen Na
Michal Derezinski
Michael W. Mahoney
288
21
0
20 Apr 2022
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
317
17
0
11 Feb 2022
Learning Linear Models Using Distributed Iterative Hessian Sketching
Han Wang
James Anderson
203
2
0
08 Dec 2021
On Second-order Optimization Methods for Federated Learning
Sebastian Bischoff
Stephan Günnemann
Martin Jaggi
Sebastian U. Stich
FedML
127
12
0
06 Sep 2021
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update
Neural Information Processing Systems (NeurIPS), 2021
Michal Derezinski
Jonathan Lacotte
Mert Pilanci
Michael W. Mahoney
282
30
0
15 Jul 2021
LocalNewton: Reducing Communication Bottleneck for Distributed Learning
Vipul Gupta
Avishek Ghosh
Michal Derezinski
Rajiv Khanna
Kannan Ramchandran
Michael W. Mahoney
168
13
0
16 May 2021
Sparse sketches with small inversion bias
Annual Conference Computational Learning Theory (COLT), 2020
Michal Derezinski
Zhenyu Liao
Guang Cheng
Michael W. Mahoney
410
23
0
21 Nov 2020
Operator Shifting for Noisy Elliptic Systems
Research in the Mathematical Sciences (Res. Math. Sci.), 2020
Philip A. Etter
Lexing Ying
359
2
0
19 Oct 2020
Debiasing Distributed Second Order Optimization with Surrogate Sketching and Scaled Regularization
Michal Derezinski
Burak Bartan
Mert Pilanci
Michael W. Mahoney
151
27
0
02 Jul 2020
Precise expressions for random projections: Low-rank approximation and randomized Newton
Michal Derezinski
Feynman T. Liang
Zhenyu A. Liao
Michael W. Mahoney
364
24
0
18 Jun 2020
Distributed Newton Can Communicate Less and Resist Byzantine Workers
Avishek Ghosh
R. Maity
A. Mazumdar
FedML
160
35
0
15 Jun 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
194
91
0
07 May 2020
Exact expressions for double descent and implicit regularization via surrogate random design
Neural Information Processing Systems (NeurIPS), 2019
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
277
79
0
10 Dec 2019
Bayesian experimental design using regularized determinantal point processes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
113
27
0
10 Jun 2019
1