ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12403
22
0

Probabilistic Decoupling of Labels in Classification

29 May 2019
Jeppe Nørregaard
Lars Kai Hansen
    BDL
ArXivPDFHTML
Abstract

We investigate probabilistic decoupling of labels supplied for training, from the underlying classes for prediction. Decoupling enables an inference scheme general enough to implement many classification problems, including supervised, semi-supervised, positive-unlabelled, noisy-label and suggests a general solution to the multi-positive-unlabelled learning problem. We test the method on the Fashion MNIST and 20 News Groups datasets for performance benchmarks, where we simulate noise, partial labelling etc.

View on arXiv
Comments on this paper