ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12612
17
13

Learning Navigation Subroutines from Egocentric Videos

29 May 2019
Ashish Kumar
Saurabh Gupta
Jitendra Malik
    SSL
    EgoV
ArXivPDFHTML
Abstract

Planning at a higher level of abstraction instead of low level torques improves the sample efficiency in reinforcement learning, and computational efficiency in classical planning. We propose a method to learn such hierarchical abstractions, or subroutines from egocentric video data of experts performing tasks. We learn a self-supervised inverse model on small amounts of random interaction data to pseudo-label the expert egocentric videos with agent actions. Visuomotor subroutines are acquired from these pseudo-labeled videos by learning a latent intent-conditioned policy that predicts the inferred pseudo-actions from the corresponding image observations. We demonstrate our proposed approach in context of navigation, and show that we can successfully learn consistent and diverse visuomotor subroutines from passive egocentric videos. We demonstrate the utility of our acquired visuomotor subroutines by using them as is for exploration, and as sub-policies in a hierarchical RL framework for reaching point goals and semantic goals. We also demonstrate behavior of our subroutines in the real world, by deploying them on a real robotic platform. Project website: https://ashishkumar1993.github.io/subroutines/.

View on arXiv
Comments on this paper