ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13082
  4. Cited By
Memory-Driven Mixed Low Precision Quantization For Enabling Deep Network
  Inference On Microcontrollers

Memory-Driven Mixed Low Precision Quantization For Enabling Deep Network Inference On Microcontrollers

30 May 2019
Manuele Rusci
Alessandro Capotondi
Luca Benini
    MQ
ArXivPDFHTML

Papers citing "Memory-Driven Mixed Low Precision Quantization For Enabling Deep Network Inference On Microcontrollers"

13 / 13 papers shown
Title
xTern: Energy-Efficient Ternary Neural Network Inference on RISC-V-Based
  Edge Systems
xTern: Energy-Efficient Ternary Neural Network Inference on RISC-V-Based Edge Systems
Georg Rutishauser
Joan Mihali
Moritz Scherer
Luca Benini
24
1
0
29 May 2024
Synergy: Towards On-Body AI via Tiny AI Accelerator Collaboration on Wearables
Synergy: Towards On-Body AI via Tiny AI Accelerator Collaboration on Wearables
Taesik Gong
S. Jang
Utku Günay Acer
F. Kawsar
Chulhong Min
33
2
0
11 Dec 2023
TinyFormer: Efficient Transformer Design and Deployment on Tiny Devices
TinyFormer: Efficient Transformer Design and Deployment on Tiny Devices
Jianlei Yang
Jiacheng Liao
Fanding Lei
Meichen Liu
Junyi Chen
Lingkun Long
Han Wan
Bei Yu
Weisheng Zhao
MoE
33
2
0
03 Nov 2023
Free Bits: Latency Optimization of Mixed-Precision Quantized Neural
  Networks on the Edge
Free Bits: Latency Optimization of Mixed-Precision Quantized Neural Networks on the Edge
Georg Rutishauser
Francesco Conti
Luca Benini
MQ
23
5
0
06 Jul 2023
BiBench: Benchmarking and Analyzing Network Binarization
BiBench: Benchmarking and Analyzing Network Binarization
Haotong Qin
Mingyuan Zhang
Yifu Ding
Aoyu Li
Zhongang Cai
Ziwei Liu
F. I. F. Richard Yu
Xianglong Liu
MQ
AAML
29
36
0
26 Jan 2023
Machine Learning for Microcontroller-Class Hardware: A Review
Machine Learning for Microcontroller-Class Hardware: A Review
Swapnil Sayan Saha
S. Sandha
Mani B. Srivastava
21
118
0
29 May 2022
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Ji Lin
Wei-Ming Chen
Han Cai
Chuang Gan
Song Han
31
152
0
28 Oct 2021
Auto-Split: A General Framework of Collaborative Edge-Cloud AI
Auto-Split: A General Framework of Collaborative Edge-Cloud AI
Amin Banitalebi-Dehkordi
Naveen Vedula
J. Pei
Fei Xia
Lanjun Wang
Yong Zhang
22
89
0
30 Aug 2021
Enabling Design Methodologies and Future Trends for Edge AI:
  Specialization and Co-design
Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Co-design
Cong Hao
Jordan Dotzel
Jinjun Xiong
Luca Benini
Zhiru Zhang
Deming Chen
50
34
0
25 Mar 2021
Machine Learning Systems in the IoT: Trustworthiness Trade-offs for Edge
  Intelligence
Machine Learning Systems in the IoT: Trustworthiness Trade-offs for Edge Intelligence
Wiebke Toussaint
Aaron Yi Ding
15
11
0
01 Dec 2020
MCUNet: Tiny Deep Learning on IoT Devices
MCUNet: Tiny Deep Learning on IoT Devices
Ji Lin
Wei-Ming Chen
Yujun Lin
J. Cohn
Chuang Gan
Song Han
56
475
0
20 Jul 2020
Robustifying the Deployment of tinyML Models for Autonomous
  mini-vehicles
Robustifying the Deployment of tinyML Models for Autonomous mini-vehicles
Miguel de Prado
Manuele Rusci
Romain Donze
Alessandro Capotondi
Serge Monnerat
Luca Benini and
Nuria Pazos
17
39
0
01 Jul 2020
Edge Intelligence: The Confluence of Edge Computing and Artificial
  Intelligence
Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence
Shuiguang Deng
Hailiang Zhao
Weijia Fang
Jianwei Yin
Schahram Dustdar
Albert Y. Zomaya
65
604
0
02 Sep 2019
1