Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13476
Cited By
v1
v2 (latest)
Exact sampling of determinantal point processes with sublinear time preprocessing
31 May 2019
Michal Derezinski
Daniele Calandriello
Michal Valko
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Exact sampling of determinantal point processes with sublinear time preprocessing"
29 / 29 papers shown
Title
MUSS: Multilevel Subset Selection for Relevance and Diversity
Vu Nguyen
Andrey Kan
110
0
0
14 Mar 2025
Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning
Michał Dereziński
Michael W. Mahoney
85
11
0
17 Jun 2024
Solving Dense Linear Systems Faster Than via Preconditioning
Michal Dereziñski
Jiaming Yang
108
12
0
14 Dec 2023
Cost-Efficient Online Decision Making: A Combinatorial Multi-Armed Bandit Approach
Arman Rahbar
Niklas Åkerblom
M. Chehreghani
111
0
0
21 Aug 2023
Learning on Bandwidth Constrained Multi-Source Data with MIMO-inspired DPP MAP Inference
Xiwen Chen
Huayu Li
Rahul Amin
Abolfazl Razi
82
3
0
04 Jun 2023
On Feature Diversity in Energy-based Models
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
77
7
0
02 Jun 2023
Improved Financial Forecasting via Quantum Machine Learning
Sohum Thakkar
Skander Kazdaghli
Natansh Mathur
Iordanis Kerenidis
A. J. Ferreira-Martins
Samurai Brito QC Ware Corp
AIFin
55
26
0
31 May 2023
Column Subset Selection and Nyström Approximation via Continuous Optimization
Anant Mathur
Sarat Moka
Z. Botev
70
1
0
19 Apr 2023
RD-DPP: Rate-Distortion Theory Meets Determinantal Point Process to Diversify Learning Data Samples
Xiwen Chen
Huayu Li
Rahul Amin
Abolfazl Razi
38
3
0
09 Apr 2023
WLD-Reg: A Data-dependent Within-layer Diversity Regularizer
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
AI4CE
58
7
0
03 Jan 2023
A Faster Sampler for Discrete Determinantal Point Processes
Simon Barthelmé
Nicolas M Tremblay
P. Amblard
38
5
0
31 Oct 2022
Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations
Yifan Chen
Ethan N. Epperly
J. Tropp
R. Webber
119
33
0
13 Jul 2022
Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
Nima Anari
Yang P. Liu
T. Vuong
54
18
0
06 Apr 2022
Scalable Sampling for Nonsymmetric Determinantal Point Processes
Insu Han
Mike Gartrell
Jennifer Gillenwater
Elvis Dohmatob
Amin Karbasi
61
4
0
20 Jan 2022
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update
Michal Derezinski
Jonathan Lacotte
Mert Pilanci
Michael W. Mahoney
119
28
0
15 Jul 2021
Sparse sketches with small inversion bias
Michal Derezinski
Zhenyu Liao
Yan Sun
Michael W. Mahoney
107
22
0
21 Nov 2020
Wasserstein Learning of Determinantal Point Processes
Lucas Anquetil
Mike Gartrell
A. Rakotomamonjy
Ugo Tanielian
Clément Calauzènes
17
2
0
19 Nov 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
82
74
0
01 Aug 2020
Debiasing Distributed Second Order Optimization with Surrogate Sketching and Scaled Regularization
Michal Derezinski
Burak Bartan
Mert Pilanci
Michael W. Mahoney
59
27
0
02 Jul 2020
Sampling from a
k
k
k
-DPP without looking at all items
Daniele Calandriello
Michal Derezinski
Michal Valko
61
24
0
30 Jun 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
78
81
0
07 May 2020
Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nyström method
Michal Derezinski
Rajiv Khanna
Michael W. Mahoney
63
10
0
21 Feb 2020
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
142
54
0
28 Oct 2019
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
118
21
0
25 Oct 2019
Nyström landmark sampling and regularized Christoffel functions
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
99
11
0
29 May 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
76
155
0
08 Mar 2019
DPPNet: Approximating Determinantal Point Processes with Deep Networks
Zelda E. Mariet
Yaniv Ovadia
Jasper Snoek
71
10
0
07 Jan 2019
Determinantal Point Processes for Coresets
Nicolas M Tremblay
Simon Barthelmé
P. Amblard
76
32
0
23 Mar 2018
Exact Sampling of Determinantal Point Processes without Eigendecomposition
Claire Launay
B. Galerne
A. Desolneux
101
31
0
23 Feb 2018
1