Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.00097
Cited By
Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains
31 May 2019
Elliot Meyerson
Risto Miikkulainen
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains"
10 / 10 papers shown
Title
Leveraging Hypernetworks and Learnable Kernels for Consumer Energy Forecasting Across Diverse Consumer Types
Muhammad Umair Danish
Katarina Grolinger
AI4TS
82
3
0
07 Feb 2025
Principled Weight Initialization for Hypernetworks
Oscar Chang
Lampros Flokas
Hod Lipson
22
73
0
13 Dec 2023
How to Reuse and Compose Knowledge for a Lifetime of Tasks: A Survey on Continual Learning and Functional Composition
Jorge Armando Mendez Mendez
Eric Eaton
KELM
CLL
26
27
0
15 Jul 2022
Learning the Effect of Registration Hyperparameters with HyperMorph
Andrew Hoopes
Malte Hoffmann
Douglas N. Greve
Bruce Fischl
John Guttag
Adrian V. Dalca
28
38
0
30 Mar 2022
Continual Learning for Multivariate Time Series Tasks with Variable Input Dimensions
Vibhor Gupta
Jyoti Narwariya
Pankaj Malhotra
L. Vig
Gautam M. Shroff
AI4TS
19
20
0
14 Mar 2022
Simple Genetic Operators are Universal Approximators of Probability Distributions (and other Advantages of Expressive Encodings)
Elliot Meyerson
Xin Qiu
Risto Miikkulainen
19
4
0
19 Feb 2022
HyperDynamics: Meta-Learning Object and Agent Dynamics with Hypernetworks
Zhou Xian
Shamit Lal
H. Tung
Emmanouil Antonios Platanios
Katerina Fragkiadaki
AI4CE
33
23
0
17 Mar 2021
The Traveling Observer Model: Multi-task Learning Through Spatial Variable Embeddings
Elliot Meyerson
Risto Miikkulainen
11
12
0
05 Oct 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
38
1,927
0
11 Apr 2020
Learning Task Grouping and Overlap in Multi-task Learning
Abhishek Kumar
Hal Daumé
181
524
0
27 Jun 2012
1