ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00399
111
34
v1v2 (latest)

Multi-Objective Pruning for CNNs Using Genetic Algorithm

International Conference on Artificial Neural Networks (ICANN), 2019
2 June 2019
Chuanguang Yang
Zhulin An
Chao Li
Boyu Diao
Yongjun Xu
    3DPC
ArXiv (abs)PDFHTML
Abstract

In this work, we propose a heuristic genetic algorithm (GA) for pruning convolutional neural networks (CNNs) according to the multi-objective trade-off among error, computation and sparsity. In our experiments, we apply our approach to prune pre-trained LeNet across the MNIST dataset, which reduces 95.42% parameter size and achieves 16×\times× speedups of convolutional layer computation with tiny accuracy loss by laying emphasis on sparsity and computation, respectively. Our empirical study suggests that GA is an alternative pruning approach for obtaining a competitive compression performance. Additionally, compared with state-of-the-art approaches, GA is capable of automatically pruning CNNs based on the multi-objective importance by a pre-defined fitness function.

View on arXiv
Comments on this paper