Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.00729
Cited By
Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum Linear Quadratic Games
31 May 2019
K. Zhang
Zhuoran Yang
Tamer Basar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum Linear Quadratic Games"
22 / 22 papers shown
Title
Learning to Steer Markovian Agents under Model Uncertainty
Jiawei Huang
Vinzenz Thoma
Zebang Shen
H. Nax
Niao He
31
2
0
14 Jul 2024
Independent RL for Cooperative-Competitive Agents: A Mean-Field Perspective
Muhammad Aneeq uz Zaman
Alec Koppel
Mathieu Laurière
Tamer Basar
39
3
0
17 Mar 2024
Distributed Policy Gradient for Linear Quadratic Networked Control with Limited Communication Range
Yuzi Yan
Yuan-Chung Shen
26
0
0
05 Mar 2024
Neural Operators of Backstepping Controller and Observer Gain Functions for Reaction-Diffusion PDEs
Miroslav Krstic
Luke Bhan
Yuanyuan Shi
48
28
0
18 Mar 2023
Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions
Shuang Qiu
Xiaohan Wei
Jieping Ye
Zhaoran Wang
Zhuoran Yang
OffRL
16
11
0
25 Jul 2022
Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for Solving Nonconvex Min-Max Problems
Thinh T. Doan
20
15
0
17 Dec 2021
Independent Learning in Stochastic Games
Asuman Ozdaglar
M. O. Sayin
K. Zhang
16
22
0
23 Nov 2021
Learning Meta Representations for Agents in Multi-Agent Reinforcement Learning
Shenao Zhang
Li Shen
Lei Han
Li Shen
16
7
0
30 Aug 2021
Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games
B. Hambly
Renyuan Xu
Huining Yang
13
25
0
27 Jul 2021
A Game-Theoretic Approach to Multi-Agent Trust Region Optimization
Ying Wen
Hui Chen
Yaodong Yang
Zheng Tian
Minne Li
Xu Chen
Jun Wang
36
11
0
12 Jun 2021
Gradient play in stochastic games: stationary points, convergence, and sample complexity
Runyu Zhang
Zhaolin Ren
Na Li
23
43
0
01 Jun 2021
Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
11
82
0
08 Feb 2021
Sample Efficient Reinforcement Learning with REINFORCE
Junzi Zhang
Jongho Kim
Brendan O'Donoghue
Stephen P. Boyd
35
99
0
22 Oct 2020
Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal Sample Complexity
K. Zhang
Sham Kakade
Tamer Bacsar
Lin F. Yang
41
119
0
15 Jul 2020
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang
Zhuoran Yang
Zhaoran Wang
27
26
0
21 Jun 2020
On the Impossibility of Global Convergence in Multi-Loss Optimization
Alistair Letcher
13
32
0
26 May 2020
Generative Adversarial Imitation Learning with Neural Networks: Global Optimality and Convergence Rate
Yufeng Zhang
Qi Cai
Zhuoran Yang
Zhaoran Wang
108
12
0
08 Mar 2020
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
20
43
0
21 Feb 2020
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
K. Zhang
Zhuoran Yang
Tamer Basar
36
1,178
0
24 Nov 2019
Non-Cooperative Inverse Reinforcement Learning
Xiangyuan Zhang
K. Zhang
Erik Miehling
Tamer Basar
8
22
0
03 Nov 2019
Policy Optimization for
H
2
\mathcal{H}_2
H
2
Linear Control with
H
∞
\mathcal{H}_\infty
H
∞
Robustness Guarantee: Implicit Regularization and Global Convergence
K. Zhang
Bin Hu
Tamer Basar
22
119
0
21 Oct 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
K. Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
28
186
0
19 Jun 2019
1