Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02174
Cited By
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
5 June 2019
Sitao Luan
Mingde Zhao
X. Chang
Doina Precup
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks"
12 / 12 papers shown
Title
Curriculum-Enhanced Residual Soft An-Isotropic Normalization for Over-smoothness in Deep GNNs
Jin Li
Qirong Zhang
Shuling Xu
Xinlong Chen
Longkun Guo
Yanglan Fu
21
0
0
13 Dec 2023
Dirichlet Energy Enhancement of Graph Neural Networks by Framelet Augmentation
Jialin Chen
Yuelin Wang
Cristian Bodnar
Rex Ying
Pietro Lió
Yu Guang Wang
22
10
0
09 Nov 2023
Clarify Confused Nodes via Separated Learning
Jiajun Zhou
Sheng Gong
Chenxuan Xie
Shanqing Yu
Qi Xuan
Xiaoniu Yang
Xiaoniu Yang
32
3
0
04 Jun 2023
Distributional Signals for Node Classification in Graph Neural Networks
Feng Ji
See Hian Lee
Kai Zhao
Wee Peng Tay
Jielong Yang
8
2
0
07 Apr 2023
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
10
61
0
28 Nov 2022
Skeleton-based Action Recognition via Temporal-Channel Aggregation
Shengqin Wang
Yongji Zhang
M. Zhao
Hong Qi
Kai Wang
Fenglin Wei
Yu Jiang
23
22
0
31 May 2022
SStaGCN: Simplified stacking based graph convolutional networks
Jia Cai
Zhilong Xiong
Shaogao Lv
GNN
25
1
0
16 Nov 2021
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
Wenqing Zheng
Edward W. Huang
Nikhil S. Rao
S. Katariya
Zhangyang Wang
Karthik Subbian
16
61
0
08 Nov 2021
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
Sitao Luan
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Shuyuan Zhang
Xiaoming Chang
Doina Precup
30
110
0
12 Sep 2021
Sampling methods for efficient training of graph convolutional networks: A survey
Xin Liu
Mingyu Yan
Lei Deng
Guoqi Li
Xiaochun Ye
Dongrui Fan
GNN
21
95
0
10 Mar 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1