Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1906.02367
Cited By
v1
v2 (latest)
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2019
6 June 2019
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations"
50 / 223 papers shown
Shifted Compression Framework: Generalizations and Improvements
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
Egor Shulgin
Peter Richtárik
150
7
0
21 Jun 2022
A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates
Journal of machine learning research (JMLR), 2022
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
195
30
0
21 Jun 2022
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
355
25
0
14 Jun 2022
Accelerating Asynchronous Federated Learning Convergence via Opportunistic Mobile Relaying
IEEE Transactions on Vehicular Technology (IEEE Trans. Veh. Technol.), 2022
Jieming Bian
Jie Xu
FedML
210
10
0
09 Jun 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Neural Information Processing Systems (NeurIPS), 2022
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
364
34
0
08 Jun 2022
Federated Adversarial Training with Transformers
Ahmed Aldahdooh
W. Hamidouche
Olivier Déforges
FedML
ViT
224
2
0
05 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
296
0
0
01 Jun 2022
DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training
International Conference on Machine Learning (ICML), 2022
Rong Dai
Li Shen
Fengxiang He
Xinmei Tian
Dacheng Tao
FedML
194
153
0
01 Jun 2022
Private Federated Submodel Learning with Sparsification
Information Theory Workshop (ITW), 2022
Sajani Vithana
S. Ulukus
FedML
205
11
0
31 May 2022
QUIC-FL: Quick Unbiased Compression for Federated Learning
Ran Ben-Basat
S. Vargaftik
Amit Portnoy
Gil Einziger
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
338
14
0
26 May 2022
Service Delay Minimization for Federated Learning over Mobile Devices
IEEE Journal on Selected Areas in Communications (JSAC), 2022
Rui Chen
Dian Shi
Xiaoqi Qin
Dongjie Liu
Miao Pan
Shuguang Cui
FedML
225
41
0
19 May 2022
On Distributed Adaptive Optimization with Gradient Compression
International Conference on Learning Representations (ICLR), 2022
Xiaoyun Li
Belhal Karimi
Ping Li
169
32
0
11 May 2022
A Communication-Efficient Distributed Gradient Clipping Algorithm for Training Deep Neural Networks
Neural Information Processing Systems (NeurIPS), 2022
Mingrui Liu
Zhenxun Zhuang
Yunwei Lei
Chunyang Liao
239
27
0
10 May 2022
EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization
Neural Information Processing Systems (NeurIPS), 2022
Laurent Condat
Kai Yi
Peter Richtárik
367
26
0
09 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
304
12
0
08 May 2022
Communication-Efficient Adaptive Federated Learning
International Conference on Machine Learning (ICML), 2022
Yujia Wang
Lu Lin
Jinghui Chen
FedML
323
96
0
05 May 2022
Byzantine Fault Tolerance in Distributed Machine Learning : a Survey
Djamila Bouhata
Hamouma Moumen
Moumen Hamouma
Ahcène Bounceur
AI4CE
309
9
0
05 May 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
International Conference on Machine Learning (ICML), 2022
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
387
85
0
04 May 2022
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
193
45
0
04 Apr 2022
Scaling the Wild: Decentralizing Hogwild!-style Shared-memory SGD
Bapi Chatterjee
Vyacheslav Kungurtsev
Dan Alistarh
FedML
147
2
0
13 Mar 2022
Correlated quantization for distributed mean estimation and optimization
International Conference on Machine Learning (ICML), 2022
A. Suresh
Ziteng Sun
Jae Hun Ro
Felix X. Yu
271
16
0
09 Mar 2022
Time-Correlated Sparsification for Efficient Over-the-Air Model Aggregation in Wireless Federated Learning
Yuxuan Sun
Sheng Zhou
Z. Niu
Deniz Gündüz
115
21
0
17 Feb 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
International Conference on Learning Representations (ICLR), 2022
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
329
22
0
12 Feb 2022
Distributed Learning With Sparsified Gradient Differences
IEEE Journal on Selected Topics in Signal Processing (IEEE JSTSP), 2022
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
222
16
0
05 Feb 2022
TOFU: Towards Obfuscated Federated Updates by Encoding Weight Updates into Gradients from Proxy Data
IEEE Access (IEEE Access), 2022
Isha Garg
M. Nagaraj
Kaushik Roy
FedML
168
1
0
21 Jan 2022
Communication-Efficient Federated Learning with Accelerated Client Gradient
Computer Vision and Pattern Recognition (CVPR), 2022
Geeho Kim
Jinkyu Kim
Bohyung Han
FedML
211
36
0
10 Jan 2022
Decentralized Multi-Task Stochastic Optimization With Compressed Communications
Navjot Singh
Xuanyu Cao
Suhas Diggavi
Tamer Basar
178
13
0
23 Dec 2021
From Deterioration to Acceleration: A Calibration Approach to Rehabilitating Step Asynchronism in Federated Optimization
Feijie Wu
Song Guo
Yining Qi
Zhihao Qu
Haobo Zhang
Jiewei Zhang
Ziming Liu
183
11
0
17 Dec 2021
FastSGD: A Fast Compressed SGD Framework for Distributed Machine Learning
Keyu Yang
Lu Chen
Zhihao Zeng
Yunjun Gao
169
9
0
08 Dec 2021
Communication-Efficient Distributed Learning via Sparse and Adaptive Stochastic Gradient
Xiaoge Deng
Dongsheng Li
Tao Sun
Xicheng Lu
FedML
263
1
0
08 Dec 2021
Collaborative Learning over Wireless Networks: An Introductory Overview
Emre Ozfatura
Deniz Gunduz
H. Vincent Poor
161
12
0
07 Dec 2021
Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges
IEEE Transactions on Emerging Topics in Computational Intelligence (IEEE TETCI), 2021
Mohammad M. Al-Quraan
Lina S. Mohjazi
Lina Bariah
A. Centeno
A. Zoha
Sami Muhaidat
Mérouane Debbah
Muhammad Ali Imran
188
93
0
14 Nov 2021
Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters
Knowledge Discovery and Data Mining (KDD), 2021
Xiangru Lian
Binhang Yuan
Xuefeng Zhu
Yulong Wang
Yongjun He
...
Lei Yuan
Hai-bo Yu
Sen Yang
Ce Zhang
Ji Liu
VLM
254
41
0
10 Nov 2021
Finite-Time Consensus Learning for Decentralized Optimization with Nonlinear Gossiping
Junya Chen
Sijia Wang
Lawrence Carin
Chenyang Tao
136
3
0
04 Nov 2021
Communication-Compressed Adaptive Gradient Method for Distributed Nonconvex Optimization
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Yujia Wang
Lu Lin
Jinghui Chen
309
21
0
01 Nov 2021
What Do We Mean by Generalization in Federated Learning?
Honglin Yuan
Warren Morningstar
Lin Ning
K. Singhal
OOD
FedML
291
94
0
27 Oct 2021
Leveraging Spatial and Temporal Correlations in Sparsified Mean Estimation
Divyansh Jhunjhunwala
Ankur Mallick
Advait Gadhikar
S. Kadhe
Gauri Joshi
169
13
0
14 Oct 2021
Federated Learning via Plurality Vote
Kai Yue
Richeng Jin
Chau-Wai Wong
H. Dai
FedML
237
10
0
06 Oct 2021
Communication-Efficient Federated Linear and Deep Generalized Canonical Correlation Analysis
IEEE Transactions on Signal Processing (IEEE TSP), 2021
Sagar Shrestha
Xiao Fu
FedML
274
0
0
25 Sep 2021
Toward Efficient Federated Learning in Multi-Channeled Mobile Edge Network with Layerd Gradient Compression
Haizhou Du
Xiaojie Feng
Qiao Xiang
Haoyu Liu
115
0
0
18 Sep 2021
Fundamental limits of over-the-air optimization: Are analog schemes optimal?
Shubham K. Jha
Prathamesh Mayekar
Himanshu Tyagi
171
10
0
11 Sep 2021
Communication Efficient Generalized Tensor Factorization for Decentralized Healthcare Networks
Jing Ma
Qiuchen Zhang
Jian Lou
Li Xiong
S. Bhavani
Joyce C. Ho
152
0
0
03 Sep 2021
GRP-FED: Addressing Client Imbalance in Federated Learning via Global-Regularized Personalization
SDM (SDM), 2021
Yen-hsiu Chou
linda Qiao
Chenxi Sun
D. Cai
Moxian Song
Hongyan Li
FedML
132
15
0
31 Aug 2021
ErrorCompensatedX: error compensation for variance reduced algorithms
Neural Information Processing Systems (NeurIPS), 2021
Hanlin Tang
Yao Li
Ji Liu
Ming Yan
238
11
0
04 Aug 2021
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
235
73
0
02 Aug 2021
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
Neural Information Processing Systems (NeurIPS), 2021
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
315
70
0
29 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
506
461
0
14 Jul 2021
BAGUA: Scaling up Distributed Learning with System Relaxations
Shaoduo Gan
Xiangru Lian
Rui Wang
Jianbin Chang
Chengjun Liu
...
Jiawei Jiang
Binhang Yuan
Sen Yang
Ji Liu
Ce Zhang
335
32
0
03 Jul 2021
Towards Heterogeneous Clients with Elastic Federated Learning
Zichen Ma
Yu Lu
Zihan Lu
Wenye Li
Jinfeng Yi
Shuguang Cui
FedML
145
3
0
17 Jun 2021
Robust Training in High Dimensions via Block Coordinate Geometric Median Descent
Anish Acharya
Abolfazl Hashemi
Prateek Jain
Sujay Sanghavi
Inderjit S. Dhillon
Ufuk Topcu
150
36
0
16 Jun 2021
Previous
1
2
3
4
5
Next