ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02493
  4. Cited By
Estimation and imputation in Probabilistic Principal Component Analysis
  with Missing Not At Random data
v1v2v3 (latest)

Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data

6 June 2019
Aude Sportisse
Claire Boyer
Julie Josse
ArXiv (abs)PDFHTML

Papers citing "Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data"

11 / 11 papers shown
Title
Exploiting Observation Bias to Improve Matrix Completion
Exploiting Observation Bias to Improve Matrix Completion
Yassir Jedra
Sean Mann
Charlotte Park
Devavrat Shah
458
1
0
03 Jan 2025
Distribution-Free Matrix Prediction Under Arbitrary Missing Pattern
Distribution-Free Matrix Prediction Under Arbitrary Missing Pattern
Meijia Shao
Yuan Zhang
98
6
0
19 May 2023
The Missing Indicator Method: From Low to High Dimensions
The Missing Indicator Method: From Low to High Dimensions
Mike Van Ness
Tomas M. Bosschieter
Roberto Halpin-Gregorio
Madeleine Udell
AI4TS
75
17
0
16 Nov 2022
HyperImpute: Generalized Iterative Imputation with Automatic Model
  Selection
HyperImpute: Generalized Iterative Imputation with Automatic Model Selection
Daniel Jarrett
B. Cebere
Tennison Liu
Alicia Curth
M. Schaar
63
78
0
15 Jun 2022
A method for comparing multiple imputation techniques: a case study on
  the U.S. National COVID Cohort Collaborative
A method for comparing multiple imputation techniques: a case study on the U.S. National COVID Cohort Collaborative
E. Casiraghi
R. Wong
Margaret A Hall
Ben Coleman
M. Notaro
...
Stephanie S. Hong
E. Pfaff
J. Reusch
Corneliu Antoniescu
Kimberly Robaski
45
15
0
13 Jun 2022
Principal Component Analysis based frameworks for efficient missing data
  imputation algorithms
Principal Component Analysis based frameworks for efficient missing data imputation algorithms
Thu Nguyen
Hoang Thien Ly
Michael Alexander Riegler
Paal Halvorsen
Hugo Lewi Hammer
41
4
0
30 May 2022
Identifiable Generative Models for Missing Not at Random Data Imputation
Identifiable Generative Models for Missing Not at Random Data Imputation
Chao Ma
Cheng Zhang
70
36
0
27 Oct 2021
Causal Matrix Completion
Causal Matrix Completion
Anish Agarwal
M. Dahleh
Devavrat Shah
Dennis Shen
CML
461
54
0
30 Sep 2021
Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
Deep Generative Pattern-Set Mixture Models for Nonignorable Missingness
Sahra Ghalebikesabi
R. Cornish
Luke J. Kelly
Chris Holmes
52
5
0
05 Mar 2021
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
not-MIWAE: Deep Generative Modelling with Missing not at Random Data
Niels Bruun Ipsen
Pierre-Alexandre Mattei
J. Frellsen
DRL
70
57
0
23 Jun 2020
Missing Not at Random in Matrix Completion: The Effectiveness of
  Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption
Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption
Wei-Ying Ma
George H. Chen
150
52
0
28 Oct 2019
1