Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.03804
Cited By
Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal
10 June 2019
Alekh Agarwal
Sham Kakade
Lin F. Yang
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal"
50 / 60 papers shown
Title
Near-Optimal Sample Complexity for Iterated CVaR Reinforcement Learning with a Generative Model
Zilong Deng
Simon Khan
Shaofeng Zou
61
0
0
11 Mar 2025
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Zhong Zheng
Haochen Zhang
Lingzhou Xue
OffRL
78
2
0
10 Oct 2024
Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
Minheng Xiao
Shi Bo
Zhizhong Wu
39
5
0
01 Aug 2024
What Are the Odds? Improving the foundations of Statistical Model Checking
Tobias Meggendorfer
Maximilian Weininger
Patrick Wienhoft
44
4
0
08 Apr 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
48
3
0
19 Mar 2024
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Yifan Hu
Andreas Krause
Ilija Bogunovic
OOD
47
10
0
05 Sep 2023
Settling the Sample Complexity of Online Reinforcement Learning
Zihan Zhang
Yuxin Chen
Jason D. Lee
S. Du
OffRL
98
22
0
25 Jul 2023
Optimal Exploration for Model-Based RL in Nonlinear Systems
Andrew Wagenmaker
Guanya Shi
Kevin G. Jamieson
41
14
0
15 Jun 2023
High-probability sample complexities for policy evaluation with linear function approximation
Gen Li
Weichen Wu
Yuejie Chi
Cong Ma
Alessandro Rinaldo
Yuting Wei
OffRL
38
7
0
30 May 2023
Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs with Short Burn-In Time
Xiang Ji
Gen Li
OffRL
34
7
0
24 May 2023
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
M. Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
35
3
0
22 May 2023
Semi-Infinitely Constrained Markov Decision Processes and Efficient Reinforcement Learning
Liangyu Zhang
Yang Peng
Wenhao Yang
Zhihua Zhang
21
1
0
29 Apr 2023
A New Policy Iteration Algorithm For Reinforcement Learning in Zero-Sum Markov Games
Anna Winnicki
R. Srikant
37
1
0
17 Mar 2023
On the Benefits of Leveraging Structural Information in Planning Over the Learned Model
Jiajun Shen
K. Kuwaranancharoen
R. Ayoub
Pietro Mercati
S. Sundaram
OffRL
30
0
0
15 Mar 2023
Improved Sample Complexity Bounds for Distributionally Robust Reinforcement Learning
Zaiyan Xu
Kishan Panaganti
D. Kalathil
OOD
OffRL
34
31
0
05 Mar 2023
A Finite Sample Complexity Bound for Distributionally Robust Q-learning
Shengbo Wang
Nian Si
Jose H. Blanchet
Zhengyuan Zhou
OOD
OffRL
43
24
0
26 Feb 2023
Provably Efficient Reinforcement Learning via Surprise Bound
Hanlin Zhu
Ruosong Wang
Jason D. Lee
OffRL
28
5
0
22 Feb 2023
Sample Complexity of Kernel-Based Q-Learning
Sing-Yuan Yeh
Fu-Chieh Chang
Chang-Wei Yueh
Pei-Yuan Wu
A. Bernacchia
Sattar Vakili
OffRL
30
4
0
01 Feb 2023
Near Sample-Optimal Reduction-based Policy Learning for Average Reward MDP
Jinghan Wang
Meng-Xian Wang
Lin F. Yang
37
16
0
01 Dec 2022
Efficient Global Planning in Large MDPs via Stochastic Primal-Dual Optimization
Gergely Neu
Nneka Okolo
40
6
0
21 Oct 2022
When to Update Your Model: Constrained Model-based Reinforcement Learning
Tianying Ji
Yu-Juan Luo
Gang Hua
Mingxuan Jing
Fengxiang He
Wen-bing Huang
26
18
0
15 Oct 2022
Exploration via Planning for Information about the Optimal Trajectory
Viraj Mehta
I. Char
J. Abbate
R. Conlin
M. Boyer
Stefano Ermon
J. Schneider
Willie Neiswanger
OffRL
29
6
0
06 Oct 2022
Strategic Decision-Making in the Presence of Information Asymmetry: Provably Efficient RL with Algorithmic Instruments
Mengxin Yu
Zhuoran Yang
Jianqing Fan
OffRL
28
8
0
23 Aug 2022
Minimax-Optimal Multi-Agent RL in Markov Games With a Generative Model
Gen Li
Yuejie Chi
Yuting Wei
Yuxin Chen
37
18
0
22 Aug 2022
Distributionally Robust Model-Based Offline Reinforcement Learning with Near-Optimal Sample Complexity
Laixi Shi
Yuejie Chi
OOD
OffRL
39
61
0
11 Aug 2022
Best Policy Identification in Linear MDPs
Jerome Taupin
Yassir Jedra
Alexandre Proutiere
44
4
0
11 Aug 2022
Near-Optimal Sample Complexity Bounds for Constrained MDPs
Sharan Vaswani
Lin F. Yang
Csaba Szepesvári
35
32
0
13 Jun 2022
Algorithm for Constrained Markov Decision Process with Linear Convergence
E. Gladin
Maksim Lavrik-Karmazin
K. Zainullina
Varvara Rudenko
Alexander V. Gasnikov
Martin Takáč
33
6
0
03 Jun 2022
When Should We Prefer Offline Reinforcement Learning Over Behavioral Cloning?
Aviral Kumar
Joey Hong
Anika Singh
Sergey Levine
OffRL
47
77
0
12 Apr 2022
The Efficacy of Pessimism in Asynchronous Q-Learning
Yuling Yan
Gen Li
Yuxin Chen
Jianqing Fan
OffRL
78
40
0
14 Mar 2022
A Statistical Analysis of Polyak-Ruppert Averaged Q-learning
Xiang Li
Wenhao Yang
Jiadong Liang
Zhihua Zhang
Michael I. Jordan
48
15
0
29 Dec 2021
Can Reinforcement Learning Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopic Followers?
Han Zhong
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
34
30
0
27 Dec 2021
Quantum Algorithms for Reinforcement Learning with a Generative Model
Daochen Wang
Aarthi Sundaram
Robin Kothari
Ashish Kapoor
M. Rötteler
37
27
0
15 Dec 2021
Recent Advances in Reinforcement Learning in Finance
B. Hambly
Renyuan Xu
Huining Yang
OffRL
29
168
0
08 Dec 2021
Sample Complexity of Robust Reinforcement Learning with a Generative Model
Kishan Panaganti
D. Kalathil
93
71
0
02 Dec 2021
Exploiting Action Impact Regularity and Exogenous State Variables for Offline Reinforcement Learning
Vincent Liu
James Wright
Martha White
OffRL
33
1
0
15 Nov 2021
Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning
Gen Li
Laixi Shi
Yuxin Chen
Yuejie Chi
OffRL
49
51
0
09 Oct 2021
Robustness and sample complexity of model-based MARL for general-sum Markov games
Jayakumar Subramanian
Amit Sinha
Aditya Mahajan
29
8
0
05 Oct 2021
Efficient Local Planning with Linear Function Approximation
Dong Yin
Botao Hao
Yasin Abbasi-Yadkori
N. Lazić
Csaba Szepesvári
32
19
0
12 Aug 2021
On the Power of Multitask Representation Learning in Linear MDP
Rui Lu
Gao Huang
S. Du
27
28
0
15 Jun 2021
Navigating to the Best Policy in Markov Decision Processes
Aymen Al Marjani
Aurélien Garivier
Alexandre Proutiere
35
21
0
05 Jun 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
26
28
0
17 May 2021
Optimal Uniform OPE and Model-based Offline Reinforcement Learning in Time-Homogeneous, Reward-Free and Task-Agnostic Settings
Ming Yin
Yu-Xiang Wang
OffRL
32
19
0
13 May 2021
Nearly Horizon-Free Offline Reinforcement Learning
Tongzheng Ren
Jialian Li
Bo Dai
S. Du
Sujay Sanghavi
OffRL
32
49
0
25 Mar 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
39
43
0
23 Mar 2021
Is Q-Learning Minimax Optimal? A Tight Sample Complexity Analysis
Gen Li
Changxiao Cai
Ee
Yuting Wei
Yuejie Chi
OffRL
55
75
0
12 Feb 2021
Fast Rates for the Regret of Offline Reinforcement Learning
Yichun Hu
Nathan Kallus
Masatoshi Uehara
OffRL
24
30
0
31 Jan 2021
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
46
165
0
15 Dec 2020
Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL
Andrea Zanette
OffRL
26
71
0
14 Dec 2020
Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs
Jiafan He
Dongruo Zhou
Quanquan Gu
21
37
0
01 Oct 2020
1
2
Next