Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.06784
Cited By
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
16 June 2019
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Juho Kannala
Yoshua Bengio
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy"
22 / 22 papers shown
Title
DYNAMITE: Dynamic Defense Selection for Enhancing Machine Learning-based Intrusion Detection Against Adversarial Attacks
Jing Chen
Onat Gungor
Zhengli Shang
Elvin Li
T. Rosing
AAML
30
0
0
17 Apr 2025
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
19
2
0
26 Nov 2023
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
22
14
0
24 Mar 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
19
18
0
29 Jan 2023
Data-free Defense of Black Box Models Against Adversarial Attacks
Gaurav Kumar Nayak
Inder Khatri
Ruchit Rawal
Anirban Chakraborty
AAML
14
1
0
03 Nov 2022
AugRmixAT: A Data Processing and Training Method for Improving Multiple Robustness and Generalization Performance
Xiaoliang Liu
S. Furao
Jian Zhao
Changhai Nie
AAML
11
1
0
21 Jul 2022
Learn2Weight: Parameter Adaptation against Similar-domain Adversarial Attacks
Siddhartha Datta
AAML
25
4
0
15 May 2022
Universum-inspired Supervised Contrastive Learning
Aiyang Han
Chuanxing Geng
Songcan Chen
SSL
21
3
0
22 Apr 2022
Modality-Balanced Embedding for Video Retrieval
Xun Wang
Bingqing Ke
Xuanping Li
Fangyu Liu
Mingyu Zhang
Xiao Liang
Qi-En Xiao
Cheng Luo
Yue Yu
16
9
0
18 Apr 2022
Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning
Mathias Lechner
Alexander Amini
Daniela Rus
T. Henzinger
AAML
16
9
0
15 Apr 2022
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
19
12
0
12 Dec 2021
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning
Yangsibo Huang
Samyak Gupta
Zhao-quan Song
Kai Li
Sanjeev Arora
FedML
AAML
SILM
12
269
0
30 Nov 2021
Towards Understanding the Data Dependency of Mixup-style Training
Muthuraman Chidambaram
Xiang Wang
Yuzheng Hu
Chenwei Wu
Rong Ge
UQCV
28
24
0
14 Oct 2021
Survey: Image Mixing and Deleting for Data Augmentation
Humza Naveed
Saeed Anwar
Munawar Hayat
Kashif Javed
Ajmal Mian
26
76
0
13 Jun 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
13
65
0
09 Apr 2021
Adversarially Optimized Mixup for Robust Classification
Jason Bunk
Srinjoy Chattopadhyay
B. S. Manjunath
S. Chandrasekaran
AAML
11
8
0
22 Mar 2021
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
19
48
0
19 Oct 2020
Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
14
19
0
19 Aug 2020
Stylized Adversarial Defense
Muzammal Naseer
Salman Khan
Munawar Hayat
F. Khan
Fatih Porikli
GAN
AAML
13
16
0
29 Jul 2020
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
264
5,319
0
05 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,108
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
250
5,830
0
08 Jul 2016
1