ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.08469
6
58

Predicting Motion of Vulnerable Road Users using High-Definition Maps and Efficient ConvNets

20 June 2019
Fang-Chieh Chou
Tsung-Han Lin
Henggang Cui
Vladan Radosavljevic
Thi Nguyen
Tzu-Kuo Huang
Matthew Niedoba
J. Schneider
Nemanja Djuric
ArXivPDFHTML
Abstract

Following detection and tracking of traffic actors, prediction of their future motion is the next critical component of a self-driving vehicle (SDV) technology, allowing the SDV to operate safely and efficiently in its environment. This is particularly important when it comes to vulnerable road users (VRUs), such as pedestrians and bicyclists. These actors need to be handled with special care due to an increased risk of injury, as well as the fact that their behavior is less predictable than that of motorized actors. To address this issue, in the current study we present a deep learning-based method for predicting VRU movement, where we rasterize high-definition maps and actor's surroundings into a bird's-eye view image used as an input to deep convolutional networks. In addition, we propose a fast architecture suitable for real-time inference, and perform an ablation study of various rasterization approaches to find the optimal choice for accurate prediction. The results strongly indicate benefits of using the proposed approach for motion prediction of VRUs, both in terms of accuracy and latency.

View on arXiv
Comments on this paper