Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.10437
Cited By
Learning Causal State Representations of Partially Observable Environments
25 June 2019
Amy Zhang
Zachary Chase Lipton
Luis Villaseñor-Pineda
Kamyar Azizzadenesheli
Anima Anandkumar
Laurent Itti
Joelle Pineau
Tommaso Furlanello
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Causal State Representations of Partially Observable Environments"
7 / 7 papers shown
Title
Bridging State and History Representations: Understanding Self-Predictive RL
Tianwei Ni
Benjamin Eysenbach
Erfan Seyedsalehi
Michel Ma
Clement Gehring
Aditya Mahajan
Pierre-Luc Bacon
AI4TS
AI4CE
17
20
0
17 Jan 2024
Common Information based Approximate State Representations in Multi-Agent Reinforcement Learning
Shitao Xiao
V. Subramanian
13
9
0
25 Oct 2021
Context-Specific Representation Abstraction for Deep Option Learning
Marwa Abdulhai
Dong-Ki Kim
Matthew D Riemer
Miao Liu
Gerald Tesauro
Jonathan P. How
OffRL
29
9
0
20 Sep 2021
Meta-Adaptive Nonlinear Control: Theory and Algorithms
Guanya Shi
Kamyar Azizzadenesheli
Michael O'Connell
Soon-Jo Chung
Yisong Yue
21
41
0
11 Jun 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Reinforcement Learning of Causal Variables Using Mediation Analysis
Tue Herlau
Rasmus Larsen
OOD
CML
21
8
0
29 Oct 2020
Meta-trained agents implement Bayes-optimal agents
Vladimir Mikulik
Grégoire Delétang
Tom McGrath
Tim Genewein
Miljan Martic
Shane Legg
Pedro A. Ortega
OOD
FedML
27
40
0
21 Oct 2020
1