ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10612
  4. Cited By
A unified sparse optimization framework to learn parsimonious
  physics-informed models from data
v1v2 (latest)

A unified sparse optimization framework to learn parsimonious physics-informed models from data

25 June 2019
Kathleen P. Champion
P. Zheng
Aleksandr Aravkin
Steven L. Brunton
J. Nathan Kutz
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "A unified sparse optimization framework to learn parsimonious physics-informed models from data"

28 / 28 papers shown
Title
Discovering dynamical laws for speech gestures
Discovering dynamical laws for speech gestures
Sam Kirkham
31
2
0
07 Apr 2025
ADAM-SINDy: An Efficient Optimization Framework for Parameterized Nonlinear Dynamical System Identification
ADAM-SINDy: An Efficient Optimization Framework for Parameterized Nonlinear Dynamical System Identification
Siva Viknesh
Younes Tatari
Amirhossein Arzani
113
3
0
21 Oct 2024
Parametric PDE Control with Deep Reinforcement Learning and
  Differentiable L0-Sparse Polynomial Policies
Parametric PDE Control with Deep Reinforcement Learning and Differentiable L0-Sparse Polynomial Policies
N. Botteghi
Urban Fasel
AI4CE
103
6
0
22 Mar 2024
Data-driven local operator finding for reduced-order modelling of plasma
  systems: I. Concept and verifications
Data-driven local operator finding for reduced-order modelling of plasma systems: I. Concept and verifications
Farbod Faraji
M. Reza
A. Knoll
J. Nathan Kutz
55
7
0
03 Mar 2024
Dynamical System Identification, Model Selection and Model Uncertainty
  Quantification by Bayesian Inference
Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference
R. Niven
Laurent Cordier
Ali Mohammad-Djafari
Markus Abel
M. Quade
101
7
0
30 Jan 2024
Sparse identification of nonlinear dynamics in the presence of library
  and system uncertainty
Sparse identification of nonlinear dynamics in the presence of library and system uncertainty
Andrew O'Brien
61
0
0
23 Jan 2024
Improved identification accuracy in equation learning via comprehensive
  $\boldsymbol{R^2}$-elimination and Bayesian model selection
Improved identification accuracy in equation learning via comprehensive R2\boldsymbol{R^2}R2-elimination and Bayesian model selection
Daniel Nickelsen
B. Bah
122
0
0
22 Nov 2023
HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
  Equations
HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing Equations
Mozes Jacobs
Bingni W. Brunton
Steven L. Brunton
J. Nathan Kutz
Ryan V. Raut
69
10
0
07 Oct 2023
An analysis of Universal Differential Equations for data-driven
  discovery of Ordinary Differential Equations
An analysis of Universal Differential Equations for data-driven discovery of Ordinary Differential Equations
Mattia Silvestri
Federico Baldo
Eleonora Misino
M. Lombardi
AI4CE
40
1
0
17 Jun 2023
OKRidge: Scalable Optimal k-Sparse Ridge Regression
OKRidge: Scalable Optimal k-Sparse Ridge Regression
Jiachang Liu
Sam Rosen
Chudi Zhong
Cynthia Rudin
47
5
0
13 Apr 2023
Benchmarking sparse system identification with low-dimensional chaos
Benchmarking sparse system identification with low-dimensional chaos
A. Kaptanoglu
Lanyue Zhang
Zachary G. Nicolaou
Urban Fasel
Steven L. Brunton
103
24
0
04 Feb 2023
Hierarchical shrinkage Gaussian processes: applications to computer code
  emulation and dynamical system recovery
Hierarchical shrinkage Gaussian processes: applications to computer code emulation and dynamical system recovery
T. Tang
Simon Mak
David B. Dunson
62
4
0
01 Feb 2023
Deep networks for system identification: a Survey
Deep networks for system identification: a Survey
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
OOD
109
45
0
30 Jan 2023
Investigating Sindy As a Tool For Causal Discovery In Time Series
  Signals
Investigating Sindy As a Tool For Causal Discovery In Time Series Signals
Andrew O'Brien
Rosina O. Weber
Edward J. Kim
CML
63
6
0
29 Dec 2022
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
Learning Sparse Nonlinear Dynamics via Mixed-Integer Optimization
Dimitris Bertsimas
Wes Gurnee
AI4CE
84
46
0
01 Jun 2022
Discrepancy Modeling Framework: Learning missing physics, modeling
  systematic residuals, and disambiguating between deterministic and random
  effects
Discrepancy Modeling Framework: Learning missing physics, modeling systematic residuals, and disambiguating between deterministic and random effects
Megan R. Ebers
K. Steele
J. Nathan Kutz
85
16
0
10 Mar 2022
PySINDy: A comprehensive Python package for robust sparse system
  identification
PySINDy: A comprehensive Python package for robust sparse system identification
A. Kaptanoglu
Brian M. de Silva
Urban Fasel
Kadierdan Kaheman
Andy J. Goldschmidt
...
Zachary G. Nicolaou
Kathleen P. Champion
Jean-Christophe Loiseau
J. Nathan Kutz
Steven L. Brunton
AI4CE
104
154
0
12 Nov 2021
A toolkit for data-driven discovery of governing equations in high-noise
  regimes
A toolkit for data-driven discovery of governing equations in high-noise regimes
Charles B. Delahunt
J. Nathan Kutz
107
19
0
08 Nov 2021
Deeptime: a Python library for machine learning dynamical models from
  time series data
Deeptime: a Python library for machine learning dynamical models from time series data
Moritz Hoffmann
Martin K. Scherer
Tim Hempel
Andreas Mardt
Brian M. de Silva
...
Stefan Klus
Hao Wu
N. Kutz
Steven L. Brunton
Frank Noé
AI4CE
101
107
0
28 Oct 2021
Robust Trimmed k-means
Robust Trimmed k-means
Olga Dorabiala
J. Nathan Kutz
Aleksandr Aravkin
OOD
44
12
0
16 Aug 2021
DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
  Systems via Moving Horizon Optimization
DySMHO: Data-Driven Discovery of Governing Equations for Dynamical Systems via Moving Horizon Optimization
F. Lejarza
M. Baldea
AI4CE
84
39
0
30 Jul 2021
Uncovering Closed-form Governing Equations of Nonlinear Dynamics from
  Videos
Uncovering Closed-form Governing Equations of Nonlinear Dynamics from Videos
Lele Luan
Yang Liu
Hao Sun
PINNAI4CE
45
0
0
09 Jun 2021
Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
  Dictionary-based Sparse Regression Approach
Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired Dictionary-based Sparse Regression Approach
P. Goyal
P. Benner
76
49
0
11 May 2021
A Deep Learning Approach for Predicting Spatiotemporal Dynamics From
  Sparsely Observed Data
A Deep Learning Approach for Predicting Spatiotemporal Dynamics From Sparsely Observed Data
Priyabrata Saha
Saibal Mukhopadhyay
AI4CE
92
5
0
30 Nov 2020
Sparsely constrained neural networks for model discovery of PDEs
Sparsely constrained neural networks for model discovery of PDEs
G. Both
Gijs Vermarien
R. Kusters
20
5
0
09 Nov 2020
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
  and Extract Noise Probability Distributions from Data
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics and Extract Noise Probability Distributions from Data
Kadierdan Kaheman
Steven L. Brunton
J. Nathan Kutz
85
84
0
12 Sep 2020
SINDy-PI: A Robust Algorithm for Parallel Implicit Sparse Identification
  of Nonlinear Dynamics
SINDy-PI: A Robust Algorithm for Parallel Implicit Sparse Identification of Nonlinear Dynamics
Kadierdan Kaheman
J. Nathan Kutz
Steven L. Brunton
76
275
0
05 Apr 2020
Universal Differential Equations for Scientific Machine Learning
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
117
599
0
13 Jan 2020
1