ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11567
  4. Cited By
Adversarial Robustness via Label-Smoothing
v1v2 (latest)

Adversarial Robustness via Label-Smoothing

27 June 2019
Morgane Goibert
Elvis Dohmatob
    AAML
ArXiv (abs)PDFHTML

Papers citing "Adversarial Robustness via Label-Smoothing"

9 / 9 papers shown
Title
Label Smoothing is Robustification against Model Misspecification
Label Smoothing is Robustification against Model Misspecification
Ryoya Yamasaki
Toshiyuki Tanaka
167
0
0
15 May 2023
In and Out-of-Domain Text Adversarial Robustness via Label Smoothing
In and Out-of-Domain Text Adversarial Robustness via Label SmoothingAnnual Meeting of the Association for Computational Linguistics (ACL), 2022
Yahan Yang
Soham Dan
Dan Roth
Insup Lee
256
8
0
20 Dec 2022
Adaptive Label Smoothing To Regularize Large-Scale Graph Training
Adaptive Label Smoothing To Regularize Large-Scale Graph TrainingSDM (SDM), 2021
Kaixiong Zhou
Ninghao Liu
Fan Yang
Zirui Liu
Rui Chen
Li Li
Soo-Hyun Choi
Helen Zhou
AI4CE
150
23
0
30 Aug 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic
  Processors and Synthetic Gradients
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
143
4
0
06 Jul 2021
Self-Progressing Robust Training
Self-Progressing Robust TrainingAAAI Conference on Artificial Intelligence (AAAI), 2020
Minhao Cheng
Pin-Yu Chen
Sijia Liu
Shiyu Chang
Cho-Jui Hsieh
Payel Das
AAMLVLM
161
10
0
22 Dec 2020
Towards Understanding Label Smoothing
Towards Understanding Label Smoothing
Yi Tian Xu
Yuanhong Xu
Qi Qian
Hao Li
Rong Jin
UQCV
167
47
0
20 Jun 2020
CAT: Customized Adversarial Training for Improved Robustness
CAT: Customized Adversarial Training for Improved RobustnessInternational Joint Conference on Artificial Intelligence (IJCAI), 2020
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OODAAML
165
125
0
17 Feb 2020
Defending Against Adversarial Attacks by Suppressing the Largest
  Eigenvalue of Fisher Information Matrix
Defending Against Adversarial Attacks by Suppressing the Largest Eigenvalue of Fisher Information Matrix
Yaxin Peng
Chaomin Shen
Guixu Zhang
Jinsong Fan
AAML
131
13
0
13 Sep 2019
Wasserstein Adversarial Regularization (WAR) on label noise
Wasserstein Adversarial Regularization (WAR) on label noise
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
221
29
0
08 Apr 2019
1