ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.00960
17
6

Going Deeper with Lean Point Networks

1 July 2019
Eric-Tuan Lê
Iasonas Kokkinos
Niloy J. Mitra
    3DPC
ArXivPDFHTML
Abstract

In this work we introduce Lean Point Networks (LPNs) to train deeper and more accurate point processing networks by relying on three novel point processing blocks that improve memory consumption, inference time, and accuracy: a convolution-type block for point sets that blends neighborhood information in a memory-efficient manner; a crosslink block that efficiently shares information across low- and high-resolution processing branches; and a multiresolution point cloud processing block for faster diffusion of information. By combining these blocks, we design wider and deeper point-based architectures. We report systematic accuracy and memory consumption improvements on multiple publicly available segmentation tasks by using our generic modules as drop-in replacements for the blocks of multiple architectures (PointNet++, DGCNN, SpiderNet, PointCNN).

View on arXiv
Comments on this paper