ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.05708
  4. Cited By
Deep auscultation: Predicting respiratory anomalies and diseases via
  recurrent neural networks

Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks

11 July 2019
D. Perna
Andrea Tagarelli
ArXivPDFHTML

Papers citing "Deep auscultation: Predicting respiratory anomalies and diseases via recurrent neural networks"

9 / 9 papers shown
Title
Detecting Respiratory Pathologies Using Convolutional Neural Networks
  and Variational Autoencoders for Unbalancing Data
Detecting Respiratory Pathologies Using Convolutional Neural Networks and Variational Autoencoders for Unbalancing Data
María Teresa García-Ordás
J. Benítez-Andrades
Isaías García-Rodríguez
Carmen Benavides
H. Alaiz-Moretón
DRL
22
86
0
03 Feb 2024
Towards using Cough for Respiratory Disease Diagnosis by leveraging
  Artificial Intelligence: A Survey
Towards using Cough for Respiratory Disease Diagnosis by leveraging Artificial Intelligence: A Survey
Aneeqa Ijaz
Muhammad Nabeel
Usama Masood
Tahir Mahmood
M. Hashmi
Iryna Posokhova
Ali Rizwan
Ali Imran
32
53
0
24 Sep 2023
An Inception-Residual-Based Architecture with Multi-Objective Loss for
  Detecting Respiratory Anomalies
An Inception-Residual-Based Architecture with Multi-Objective Loss for Detecting Respiratory Anomalies
Dat Ngo
L. D. Pham
Huy P Phan
Minh Tran
D. Jarchi
Ş. Kolozali
32
3
0
07 Mar 2023
Training one model to detect heart and lung sound events from single
  point auscultations
Training one model to detect heart and lung sound events from single point auscultations
Leander Melms
Robert R. Ilesan
Ulrich Köhler
O. Hildebrandt
R. Conradt
...
Jürgen R. Schaefer
Tobias Müller
J. Obergassel
Nadine Schlicker
M. Hirsch
26
2
0
15 Jan 2023
COVID-19 Detection from Respiratory Sounds with Hierarchical Spectrogram
  Transformers
COVID-19 Detection from Respiratory Sounds with Hierarchical Spectrogram Transformers
Idil Aytekin
Onat Dalmaz
Kaan Gonc
H. Ankishan
E. Saritas
Ulas Bagci
H. Celik
Tolga Çukur
22
12
0
19 Jul 2022
An Ensemble of Deep Learning Frameworks Applied For Predicting
  Respiratory Anomalies
An Ensemble of Deep Learning Frameworks Applied For Predicting Respiratory Anomalies
L. D. Pham
Dat Ngo
T. Hoang
Alexander Schindler
Ian Mcloughlin
21
5
0
09 Jan 2022
Lung Sound Classification Using Co-tuning and Stochastic Normalization
Lung Sound Classification Using Co-tuning and Stochastic Normalization
T. Nguyen
Franz Pernkopf
19
86
0
04 Aug 2021
Neural Networks for Pulmonary Disease Diagnosis using Auditory and
  Demographic Information
Neural Networks for Pulmonary Disease Diagnosis using Auditory and Demographic Information
M. Hosseini
Haoran Ren
Hasib-Al Rashid
A. Mazumder
Bharat Prakash
T. Mohsenin
24
20
0
26 Nov 2020
Robust Deep Learning Framework For Predicting Respiratory Anomalies and
  Diseases
Robust Deep Learning Framework For Predicting Respiratory Anomalies and Diseases
L. D. Pham
Ian Mcloughlin
Huy P Phan
Minh Tran
T. Nguyen
Ramaswamy Palaniappan
14
44
0
21 Jan 2020
1