Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.08226
Cited By
Who is Afraid of Big Bad Minima? Analysis of Gradient-Flow in a Spiked Matrix-Tensor Model
18 July 2019
Stefano Sarao Mannelli
Giulio Biroli
C. Cammarota
Florent Krzakala
Lenka Zdeborová
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Who is Afraid of Big Bad Minima? Analysis of Gradient-Flow in a Spiked Matrix-Tensor Model"
7 / 7 papers shown
Title
Sudakov-Fernique post-AMP, and a new proof of the local convexity of the TAP free energy
Michael Celentano
18
20
0
19 Aug 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
43
59
0
08 Jun 2022
Universal characteristics of deep neural network loss surfaces from random matrix theory
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
Diego Granziol
22
4
0
17 May 2022
Optimal learning rate schedules in high-dimensional non-convex optimization problems
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
11
7
0
09 Feb 2022
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
13
11
0
12 Feb 2021
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Valentin De Bortoli
Alain Durmus
Xavier Fontaine
Umut Simsekli
8
25
0
13 Jul 2020
Thresholds of descending algorithms in inference problems
Stefano Sarao Mannelli
Lenka Zdeborova
AI4CE
16
4
0
02 Jan 2020
1