Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1907.10374
Cited By
Anomaly-based Intrusion Detection in Industrial Data with SVM and Random Forests
24 July 2019
S. D. Antón
Sapna Sinha
Hans D. Schotten
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Anomaly-based Intrusion Detection in Industrial Data with SVM and Random Forests"
8 / 8 papers shown
Title
CTMBIDS: Convolutional Tsetlin Machine Based Intrusion Detection System for DDoS attacks in an SDN environment
Rasoul Jafari Gohari
Laya Aliahmadipour
M. Rafsanjani
AAML
28
1
0
05 Sep 2024
Deployment Challenges of Industrial Intrusion Detection Systems
Konrad Wolsing
Eric Wagner
Frederik Basels
Patrick Wagner
Klaus Wehrle
25
1
0
04 Mar 2024
Online Transition-Based Feature Generation for Anomaly Detection in Concurrent Data Streams
Yinzhen Zhong
A. Lisitsa
22
0
0
17 Aug 2023
Quantile LSTM: A Robust LSTM for Anomaly Detection In Time Series Data
Snehanshu Saha
Jyotirmoy Sarkar
S. Dhavala
Santonu Sarkar
Preyank Mota
AI4TS
20
2
0
17 Feb 2023
On Explainability in AI-Solutions: A Cross-Domain Survey
S. D. Antón
Daniel Schneider
Hans D. Schotten
23
2
0
11 Oct 2022
A False Sense of Security? Revisiting the State of Machine Learning-Based Industrial Intrusion Detection
Dominik Kus
Eric Wagner
Jan Pennekamp
Konrad Wolsing
I. Fink
Markus Dahlmanns
Klaus Wehrle
Martin Henze
29
24
0
18 May 2022
IPAL: Breaking up Silos of Protocol-dependent and Domain-specific Industrial Intrusion Detection Systems
Konrad Wolsing
Eric Wagner
Antoine Saillard
Martin Henze
21
31
0
05 Nov 2021
Investigating the Ecosystem of Offensive Information Security Tools
S. D. Antón
Daniel Fraunholz
Daniel Schneider
17
2
0
16 Dec 2020
1