ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.12508
  4. Cited By
Tackling Ordinal Regression Problem for Heterogeneous Data: Sparse and
  Deep Multi-Task Learning Approaches
v1v2 (latest)

Tackling Ordinal Regression Problem for Heterogeneous Data: Sparse and Deep Multi-Task Learning Approaches

29 July 2019
Lu Wang
D. Zhu
ArXiv (abs)PDFHTML

Papers citing "Tackling Ordinal Regression Problem for Heterogeneous Data: Sparse and Deep Multi-Task Learning Approaches"

2 / 2 papers shown
Title
Regressing Relative Fine-Grained Change for Sub-Groups in Unreliable
  Heterogeneous Data Through Deep Multi-Task Metric Learning
Regressing Relative Fine-Grained Change for Sub-Groups in Unreliable Heterogeneous Data Through Deep Multi-Task Metric Learning
Niall O' Mahony
S. Campbell
L. Krpalkova
Joseph Walsh
Daniel Riordan
35
1
0
11 Aug 2022
Probability Link Models with Symmetric Information Divergence
Probability Link Models with Symmetric Information Divergence
M. Asadi
K. Devarajan
N. Ebrahimi
E. Soofi
Lauren Spirko-Burns
15
1
0
10 Aug 2020
1