ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.00865
  4. Cited By
Gradient flows and proximal splitting methods: A unified view on
  accelerated and stochastic optimization

Gradient flows and proximal splitting methods: A unified view on accelerated and stochastic optimization

2 August 2019
G. França
Daniel P. Robinson
René Vidal
ArXivPDFHTML

Papers citing "Gradient flows and proximal splitting methods: A unified view on accelerated and stochastic optimization"

3 / 3 papers shown
Title
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
43
25
0
20 Mar 2022
A Nonsmooth Dynamical Systems Perspective on Accelerated Extensions of
  ADMM
A Nonsmooth Dynamical Systems Perspective on Accelerated Extensions of ADMM
G. França
Daniel P. Robinson
René Vidal
28
18
0
13 Aug 2018
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
110
1,157
0
04 Mar 2015
1