ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.01842
  4. Cited By
Nonparametric Regression on Low-Dimensional Manifolds using Deep ReLU
  Networks : Function Approximation and Statistical Recovery

Nonparametric Regression on Low-Dimensional Manifolds using Deep ReLU Networks : Function Approximation and Statistical Recovery

5 August 2019
Minshuo Chen
Haoming Jiang
Wenjing Liao
T. Zhao
ArXivPDFHTML

Papers citing "Nonparametric Regression on Low-Dimensional Manifolds using Deep ReLU Networks : Function Approximation and Statistical Recovery"

19 / 19 papers shown
Title
Transformers for Learning on Noisy and Task-Level Manifolds: Approximation and Generalization Insights
Transformers for Learning on Noisy and Task-Level Manifolds: Approximation and Generalization Insights
Zhaiming Shen
Alex Havrilla
Rongjie Lai
A. Cloninger
Wenjing Liao
59
0
0
06 May 2025
Learning with Noisy Labels: the Exploration of Error Bounds in Classification
Haixia Liu
Boxiao Li
Can Yang
Yang Wang
51
0
0
28 Jan 2025
Deep Transfer Learning: Model Framework and Error Analysis
Deep Transfer Learning: Model Framework and Error Analysis
Yuling Jiao
Huazhen Lin
Yuchen Luo
Jerry Zhijian Yang
49
1
0
12 Oct 2024
On the optimal approximation of Sobolev and Besov functions using deep
  ReLU neural networks
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
72
2
0
02 Sep 2024
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Hong Ye Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
62
0
0
13 Aug 2024
Causal inference through multi-stage learning and doubly robust deep
  neural networks
Causal inference through multi-stage learning and doubly robust deep neural networks
Yuqian Zhang
Jelena Bradic
OOD
CML
42
0
0
11 Jul 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
96
2
0
08 Jul 2024
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model
  Reduction for Operator Learning
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model Reduction for Operator Learning
Hao Liu
Biraj Dahal
Rongjie Lai
Wenjing Liao
AI4CE
49
5
0
19 Jan 2024
Double-well Net for Image Segmentation
Double-well Net for Image Segmentation
Haotian Liu
Jun Liu
Raymond H. F. Chan
Xue-Cheng Tai
73
7
0
31 Dec 2023
Color Image Recovery Using Generalized Matrix Completion over
  Higher-Order Finite Dimensional Algebra
Color Image Recovery Using Generalized Matrix Completion over Higher-Order Finite Dimensional Algebra
L. Liao
Zhuang Guo
Qi Gao
Yan Wang
Fajun Yu
Qifeng Zhao
Stephen J. Maybank
23
55
0
04 Aug 2023
Deep Nonparametric Estimation of Intrinsic Data Structures by Chart
  Autoencoders: Generalization Error and Robustness
Deep Nonparametric Estimation of Intrinsic Data Structures by Chart Autoencoders: Generalization Error and Robustness
Hao Liu
Alex Havrilla
Rongjie Lai
Wenjing Liao
54
6
0
17 Mar 2023
Intrinsic and extrinsic deep learning on manifolds
Intrinsic and extrinsic deep learning on manifolds
Yi-Zheng Fang
Ilsang Ohn
Vijay Gupta
Lizhen Lin
18
2
0
16 Feb 2023
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Ke Chen
Chunmei Wang
Haizhao Yang
AI4CE
47
13
0
28 Jan 2023
Neural Networks Efficiently Learn Low-Dimensional Representations with
  SGD
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Fitting an immersed submanifold to data via Sussmann's orbit theorem
Fitting an immersed submanifold to data via Sussmann's orbit theorem
Joshua Hanson
Maxim Raginsky
33
4
0
03 Apr 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional
  Spaces
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
54
37
0
01 Jan 2022
A Deep Generative Approach to Conditional Sampling
A Deep Generative Approach to Conditional Sampling
Xingyu Zhou
Yuling Jiao
Jin Liu
Jian Huang
20
42
0
19 Oct 2021
Deep Networks Provably Classify Data on Curves
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
28
9
0
29 Jul 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic
  Error Bounds with Polynomial Prefactors
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
66
50
0
14 Apr 2021
1