ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.02337
  4. Cited By
DNNSurv: Deep Neural Networks for Survival Analysis Using Pseudo Values
v1v2 (latest)

DNNSurv: Deep Neural Networks for Survival Analysis Using Pseudo Values

6 August 2019
Lili Zhao
Dai Feng
    AAML
ArXiv (abs)PDFHTMLGithub (18★)

Papers citing "DNNSurv: Deep Neural Networks for Survival Analysis Using Pseudo Values"

9 / 9 papers shown
Title
Survival Analysis as Imprecise Classification with Trainable Kernels
Survival Analysis as Imprecise Classification with Trainable Kernels
A. Konstantinov
Vlada A. Efremenko
Lev V. Utkin
42
0
0
11 Jun 2025
Interpretable Machine Learning for Survival Analysis
Interpretable Machine Learning for Survival Analysis
Sophie Hanna Langbein
Mateusz Krzyzinski
Mikolaj Spytek
Hubert Baniecki
P. Biecek
Marvin N. Wright
85
2
0
15 Mar 2024
BENK: The Beran Estimator with Neural Kernels for Estimating the
  Heterogeneous Treatment Effect
BENK: The Beran Estimator with Neural Kernels for Estimating the Heterogeneous Treatment Effect
Stanislav R. Kirpichenko
Lev V. Utkin
A. Konstantinov
CML
106
0
0
19 Nov 2022
Unifying Gradients to Improve Real-world Robustness for Deep Networks
Unifying Gradients to Improve Real-world Robustness for Deep Networks
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
88
3
0
12 Aug 2022
Fast approximations of pseudo-observations in the context of
  right-censoring and interval-censoring
Fast approximations of pseudo-observations in the context of right-censoring and interval-censoring
Olivier Bouaziz
30
0
0
07 Sep 2021
BDNNSurv: Bayesian deep neural networks for survival analysis using
  pseudo values
BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values
Dai Feng
Lili Zhao
48
32
0
07 Jan 2021
DeepHazard: neural network for time-varying risks
DeepHazard: neural network for time-varying risks
Denise Rava
Jelena Bradic
52
7
0
26 Jul 2020
A robust algorithm for explaining unreliable machine learning survival
  models using the Kolmogorov-Smirnov bounds
A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds
M. Kovalev
Lev V. Utkin
AAML
81
32
0
05 May 2020
SurvLIME-Inf: A simplified modification of SurvLIME for explanation of
  machine learning survival models
SurvLIME-Inf: A simplified modification of SurvLIME for explanation of machine learning survival models
Lev V. Utkin
M. Kovalev
E. Kasimov
53
10
0
05 May 2020
1