ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.02894
  4. Cited By
How much data is sufficient to learn high-performing algorithms?
  Generalization guarantees for data-driven algorithm design
v1v2v3v4 (latest)

How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design

8 August 2019
Maria-Florina Balcan
Dan F. DeBlasio
Travis Dick
Carl Kingsford
Tuomas Sandholm
Ellen Vitercik
ArXiv (abs)PDFHTML

Papers citing "How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design"

15 / 15 papers shown
Title
Algorithms with Prediction Portfolios
Algorithms with Prediction Portfolios
M. Dinitz
Sungjin Im
Thomas Lavastida
Benjamin Moseley
Sergei Vassilvitskii
OOD
100
21
0
22 Oct 2022
Improved Generalization Bound and Learning of Sparsity Patterns for
  Data-Driven Low-Rank Approximation
Improved Generalization Bound and Learning of Sparsity Patterns for Data-Driven Low-Rank Approximation
Shinsaku Sakaue
Taihei Oki
112
4
0
17 Sep 2022
Generalization Bounds for Data-Driven Numerical Linear Algebra
Generalization Bounds for Data-Driven Numerical Linear Algebra
Peter L. Bartlett
Piotr Indyk
Tal Wagner
95
15
0
16 Jun 2022
Formalizing Preferences Over Runtime Distributions
Formalizing Preferences Over Runtime Distributions
Devon R. Graham
Kevin Leyton-Brown
Tim Roughgarden
43
5
0
25 May 2022
Setting Fair Incentives to Maximize Improvement
Setting Fair Incentives to Maximize Improvement
Saba Ahmadi
Hedyeh Beyhaghi
Avrim Blum
Keziah Naggita
60
6
0
28 Feb 2022
Learning Predictions for Algorithms with Predictions
Learning Predictions for Algorithms with Predictions
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
Sergei Vassilvitskii
87
27
0
18 Feb 2022
Differentiable Economics for Randomized Affine Maximizer Auctions
Differentiable Economics for Randomized Affine Maximizer Auctions
Michael J. Curry
Tuomas Sandholm
John P. Dickerson
74
31
0
06 Feb 2022
A Survey of Methods for Automated Algorithm Configuration
A Survey of Methods for Automated Algorithm Configuration
Elias Schede
Jasmin Brandt
Alexander Tornede
Marcel Wever
Viktor Bengs
Eyke Hüllermeier
Kevin Tierney
92
52
0
03 Feb 2022
Improved Sample Complexity Bounds for Branch-and-Cut
Improved Sample Complexity Bounds for Branch-and-Cut
Maria-Florina Balcan
Siddharth Prasad
Tuomas Sandholm
Ellen Vitercik
77
16
0
18 Nov 2021
Faster Matchings via Learned Duals
Faster Matchings via Learned Duals
M. Dinitz
Sungjin Im
Thomas Lavastida
Benjamin Moseley
Sergei Vassilvitskii
51
69
0
20 Jul 2021
Sample Complexity of Tree Search Configuration: Cutting Planes and
  Beyond
Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond
Maria-Florina Balcan
Siddharth Prasad
Tuomas Sandholm
Ellen Vitercik
57
39
0
08 Jun 2021
Generalization in portfolio-based algorithm selection
Generalization in portfolio-based algorithm selection
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
76
12
0
24 Dec 2020
Learnable and Instance-Robust Predictions for Online Matching, Flows and
  Load Balancing
Learnable and Instance-Robust Predictions for Online Matching, Flows and Load Balancing
Thomas Lavastida
Benjamin Moseley
R. Ravi
Chenyang Xu
OOD
104
59
0
23 Nov 2020
Data-driven Algorithm Design
Data-driven Algorithm Design
Maria-Florina Balcan
37
2
0
14 Nov 2020
Learning to Link
Learning to Link
Maria-Florina Balcan
Travis Dick
Manuel Lang
90
25
0
01 Jul 2019
1