ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.04172
  4. Cited By
nGraph-HE2: A High-Throughput Framework for Neural Network Inference on
  Encrypted Data
v1v2 (latest)

nGraph-HE2: A High-Throughput Framework for Neural Network Inference on Encrypted Data

IACR Cryptology ePrint Archive (IACR ePrint), 2019
12 August 2019
Fabian Boemer
Anamaria Costache
Rosario Cammarota
Casimir Wierzynski
    GNN
ArXiv (abs)PDFHTML

Papers citing "nGraph-HE2: A High-Throughput Framework for Neural Network Inference on Encrypted Data"

45 / 45 papers shown
HEIR: A Universal Compiler for Homomorphic Encryption
HEIR: A Universal Compiler for Homomorphic Encryption
Asra Ali
Jaeho Choi
Bryant Gipson
Shruthi Gorantala
Jeremy Kun
Wouter Legiest
Lawrence Lim
Alexander Viand
Meron Zerihun Demissie
Hongren Zheng
52
4
0
14 Aug 2025
HE-LRM: Encrypted Deep Learning Recommendation Models using Fully Homomorphic Encryption
HE-LRM: Encrypted Deep Learning Recommendation Models using Fully Homomorphic Encryption
Karthik Garimella
Austin Ebel
Gabrielle De Micheli
Brandon Reagen
FedML
204
4
0
22 Jun 2025
A Training Framework for Optimal and Stable Training of Polynomial Neural Networks
A Training Framework for Optimal and Stable Training of Polynomial Neural Networks
Forsad Al Hossain
Tauhidur Rahman
150
0
0
16 May 2025
Flash: A Hybrid Private Inference Protocol for Deep CNNs with High Accuracy and Low Latency on CPU
Flash: A Hybrid Private Inference Protocol for Deep CNNs with High Accuracy and Low Latency on CPU
H. Roh
Jinsu Yeo
Yeongil Ko
Gu-Yeon Wei
David Brooks
Woo-Seok Choi
371
2
0
20 Jan 2025
CBNN: 3-Party Secure Framework for Customized Binary Neural Networks
  Inference
CBNN: 3-Party Secure Framework for Customized Binary Neural Networks Inference
Shiwen Wei
Zhili Chen
Xin Chen
Shiwen Wei
Jie Fu
Huifa Li
230
1
0
21 Dec 2024
Enabling Practical and Privacy-Preserving Image Processing
Enabling Practical and Privacy-Preserving Image Processing
Chao Wang
Shubing Yang
Xiaoyan Sun
Jun Dai
Dongfang Zhao
PICV
159
3
0
05 Sep 2024
Speed-up of Data Analysis with Kernel Trick in Encrypted Domain
Speed-up of Data Analysis with Kernel Trick in Encrypted DomainACM Symposium on Applied Computing (SAC), 2024
Joon Soo Yoo
B. Song
Tae Min Ahn
Ji Won Heo
Ji Won Yoon
144
0
0
14 Jun 2024
Taiyi: A high-performance CKKS accelerator for Practical Fully
  Homomorphic Encryption
Taiyi: A high-performance CKKS accelerator for Practical Fully Homomorphic Encryption
Shengyu Fan
Xianglong Deng
Zhuoyu Tian
Zhicheng Hu
Liang Chang
Rui Hou
Dan Meng
Mingzhe Zhang
255
3
0
15 Mar 2024
Privacy-Preserving Diffusion Model Using Homomorphic Encryption
Privacy-Preserving Diffusion Model Using Homomorphic Encryption
Yaojian Chen
Qiben Yan
209
9
0
09 Mar 2024
Bi-CryptoNets: Leveraging Different-Level Privacy for Encrypted
  Inference
Bi-CryptoNets: Leveraging Different-Level Privacy for Encrypted Inference
Man-Jie Yuan
Zheng Zou
Wei Gao
116
0
0
02 Feb 2024
A Compiler from Array Programs to Vectorized Homomorphic Encryption
A Compiler from Array Programs to Vectorized Homomorphic Encryption
Rolph Recto
Andrew C. Myers
159
3
0
10 Nov 2023
slytHErin: An Agile Framework for Encrypted Deep Neural Network
  Inference
slytHErin: An Agile Framework for Encrypted Deep Neural Network Inference
Francesco Intoci
Sinem Sav
Apostolos Pyrgelis
Jean-Philippe Bossuat
J. Troncoso-Pastoriza
Jean-Pierre Hubaux
FedML
171
1
0
01 May 2023
Training Large Scale Polynomial CNNs for E2E Inference over Homomorphic
  Encryption
Training Large Scale Polynomial CNNs for E2E Inference over Homomorphic Encryption
Moran Baruch
Nir Drucker
Gilad Ezov
Yoav Goldberg
Eyal Kushnir
Jenny Lerner
Omri Soceanu
Itamar Zimerman
275
7
0
26 Apr 2023
RPU: The Ring Processing Unit
RPU: The Ring Processing UnitIEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2023
Deepraj Soni
Negar Neda
Naifeng Zhang
Benedict Reynwar
Homer Gamil
...
David Cousins
F. Franchetti
M. French
A. Schmidt
Brandon Reagen
182
16
0
30 Mar 2023
Towards Automated Homomorphic Encryption Parameter Selection with Fuzzy
  Logic and Linear Programming
Towards Automated Homomorphic Encryption Parameter Selection with Fuzzy Logic and Linear ProgrammingExpert systems with applications (ESWA), 2023
José Cabrero-Holgueras
S. Pastrana
151
8
0
17 Feb 2023
HE-MAN -- Homomorphically Encrypted MAchine learning with oNnx models
HE-MAN -- Homomorphically Encrypted MAchine learning with oNnx modelsInternational Conference on Machine Learning Technologies (ICMLT), 2023
Martin Nocker
David Drexel
Michael Rader
Alessio Montuoro
Pascal Schöttle
176
10
0
16 Feb 2023
Privacy-Preserving Credit Card Fraud Detection using Homomorphic
  Encryption
Privacy-Preserving Credit Card Fraud Detection using Homomorphic Encryption
David Nugent
135
6
0
12 Nov 2022
Partially Oblivious Neural Network Inference
Partially Oblivious Neural Network InferenceInternational Conference on Security and Cryptography (SECRYPT), 2022
P. Rizomiliotis
Christos Diou
Aikaterini Triakosia
Ilias Kyrannas
Konstantinos Tserpes
FedML
144
4
0
27 Oct 2022
SEEK: model extraction attack against hybrid secure inference protocols
SEEK: model extraction attack against hybrid secure inference protocolsIACR Cryptology ePrint Archive (IACR ePrint), 2022
Si-Quan Chen
Junfeng Fan
MIACV
151
2
0
14 Sep 2022
Privacy-Preserving Federated Recurrent Neural Networks
Privacy-Preserving Federated Recurrent Neural NetworksProceedings on Privacy Enhancing Technologies (PoPETs), 2022
Sinem Sav
Abdulrahman Diaa
Apostolos Pyrgelis
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
213
9
0
28 Jul 2022
THE-X: Privacy-Preserving Transformer Inference with Homomorphic
  Encryption
THE-X: Privacy-Preserving Transformer Inference with Homomorphic EncryptionFindings (Findings), 2022
Tianyu Chen
Hangbo Bao
Shaohan Huang
Li Dong
Binxing Jiao
Daxin Jiang
Haoyi Zhou
Jianxin Li
Furu Wei
314
132
0
01 Jun 2022
CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution
  (Extended Version)
CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution (Extended Version)Design, Automation and Test in Europe (DATE), 2022
M. Nabeel
Homer Gamil
Deepraj Soni
M. Ashraf
Mizan Abraha Gebremichael
E. Chielle
Ramesh Karri
M. Sanduleanu
Michail Maniatakos
237
25
0
19 Apr 2022
HECO: Fully Homomorphic Encryption Compiler
HECO: Fully Homomorphic Encryption CompilerUSENIX Security Symposium (USENIX Security), 2022
Alexander Viand
Patrick Jattke
Miro Haller
Anwar Hithnawi
304
22
0
03 Feb 2022
A methodology for training homomorphicencryption friendly neural
  networks
A methodology for training homomorphicencryption friendly neural networks
Moran Baruch
Nir Drucker
L. Greenberg
Guy Moshkowich
215
16
0
05 Nov 2021
Privacy-Preserving Machine Learning with Fully Homomorphic Encryption
  for Deep Neural Network
Privacy-Preserving Machine Learning with Fully Homomorphic Encryption for Deep Neural NetworkIEEE Access (IEEE Access), 2021
Joon-Woo Lee
Hyungchul Kang
Yongwoo Lee
W. Choi
Jieun Eom
...
Eunsang Lee
Junghyun Lee
Donghoon Yoo
Young-Sik Kim
Jong-Seon No
197
322
0
14 Jun 2021
SIRNN: A Math Library for Secure RNN Inference
SIRNN: A Math Library for Secure RNN InferenceIEEE Symposium on Security and Privacy (IEEE S&P), 2021
Deevashwer Rathee
Mayank Rathee
R. Goli
Divya Gupta
Rahul Sharma
Nishanth Chandran
Aseem Rastogi
154
135
0
10 May 2021
TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
  Encryption
TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption
Ayoub Benaissa
Bilal Retiat
Bogdan Cebere
Alaa Eddine Belfedhal
FedML
182
190
0
07 Apr 2021
Enabling Homomorphically Encrypted Inference for Large DNN Models
Enabling Homomorphically Encrypted Inference for Large DNN ModelsIEEE transactions on computers (IEEE Trans. Comput.), 2021
Guillermo Lloret-Talavera
Marc Jordà
Harald Servat
Fabian Boemer
C. Chauhan
S. Tomishima
Nilesh N. Shah
Antonio J. Peña
AI4CEFedML
203
31
0
30 Mar 2021
Practical Encrypted Computing for IoT Clients
Practical Encrypted Computing for IoT Clients
McKenzie van der Hagen
Brandon Lucia
123
9
0
11 Mar 2021
Porcupine: A Synthesizing Compiler for Vectorized Homomorphic Encryption
Porcupine: A Synthesizing Compiler for Vectorized Homomorphic EncryptionACM-SIGPLAN Symposium on Programming Language Design and Implementation (PLDI), 2021
M. Cowan
Deeksha Dangwal
Armin Alaghi
Caroline Trippel
Vincent T. Lee
Brandon Reagen
131
47
0
19 Jan 2021
SoK: Fully Homomorphic Encryption Compilers
SoK: Fully Homomorphic Encryption CompilersIEEE Symposium on Security and Privacy (IEEE S&P), 2021
Alexander Viand
Patrick Jattke
Anwar Hithnawi
157
110
0
18 Jan 2021
HeLayers: A Tile Tensors Framework for Large Neural Networks on
  Encrypted Data
HeLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data
E. Aharoni
Allon Adir
Moran Baruch
Nir Drucker
Gilad Ezov
...
Ramy Masalha
Guy Moshkowich
Dov Murik
Hayim Shaul
Omri Soceanu
FedML
307
75
0
03 Nov 2020
CrypTFlow2: Practical 2-Party Secure Inference
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
265
385
0
13 Oct 2020
A brief history on Homomorphic learning: A privacy-focused approach to
  machine learning
A brief history on Homomorphic learning: A privacy-focused approach to machine learning
Aadesh Neupane
111
1
0
09 Sep 2020
Highly Accurate CNN Inference Using Approximate Activation Functions
  over Homomorphic Encryption
Highly Accurate CNN Inference Using Approximate Activation Functions over Homomorphic Encryption
Takumi Ishiyama
Takuya Suzuki
Hayato Yamana
209
51
0
08 Sep 2020
POSEIDON: Privacy-Preserving Federated Neural Network Learning
POSEIDON: Privacy-Preserving Federated Neural Network LearningNetwork and Distributed System Security Symposium (NDSS), 2020
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
FedML
210
170
0
01 Sep 2020
Trustworthy AI Inference Systems: An Industry Research View
Trustworthy AI Inference Systems: An Industry Research View
Rosario Cammarota
M. Schunter
Anand Rajan
Fabian Boemer
Ágnes Kiss
...
Aydin Aysu
Fateme S. Hosseini
Chengmo Yang
Eric Wallace
Pam Norton
234
17
0
10 Aug 2020
Offline Model Guard: Secure and Private ML on Mobile Devices
Offline Model Guard: Secure and Private ML on Mobile Devices
Sebastian P. Bayerl
Tommaso Frassetto
Patrick Jauernig
Korbinian Riedhammer
A. Sadeghi
T. Schneider
Emmanuel Stapf
Christian Weinert
OffRL
194
50
0
05 Jul 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function
  Secret Sharing
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
289
125
0
08 Jun 2020
Scalable Privacy-Preserving Distributed Learning
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
238
73
0
19 May 2020
ArchNet: Data Hiding Model in Distributed Machine Learning System
ArchNet: Data Hiding Model in Distributed Machine Learning System
Kaiyan Chang
Wei Jiang
Xiangyu Wen
Zicheng Gong
Weijia Pan
FedML
162
0
0
23 Apr 2020
A Privacy-Preserving Distributed Architecture for
  Deep-Learning-as-a-Service
A Privacy-Preserving Distributed Architecture for Deep-Learning-as-a-ServiceIEEE International Joint Conference on Neural Network (IJCNN), 2020
Simone Disabato
Alessandro Falcetta
Alessio Mongelluzzo
M. Roveri
FedML
180
15
0
30 Mar 2020
HEAAN Demystified: Accelerating Fully Homomorphic Encryption Through
  Architecture-centric Analysis and Optimization
HEAAN Demystified: Accelerating Fully Homomorphic Encryption Through Architecture-centric Analysis and OptimizationIEEE Access (IEEE Access), 2020
Wonkyung Jung
Eojin Lee
Sangpyo Kim
Keewoo Lee
Namhoon Kim
Chohong Min
Jung Hee Cheon
Jung Ho Ahn
159
69
0
10 Mar 2020
CryptoSPN: Privacy-preserving Sum-Product Network Inference
CryptoSPN: Privacy-preserving Sum-Product Network InferenceEuropean Conference on Artificial Intelligence (ECAI), 2020
Amos Treiber
Alejandro Molina
Christian Weinert
T. Schneider
Kristian Kersting
140
11
0
03 Feb 2020
CrypTFlow: Secure TensorFlow Inference
CrypTFlow: Secure TensorFlow InferenceIEEE Symposium on Security and Privacy (IEEE S&P), 2019
Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
304
264
0
16 Sep 2019
1