ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.05164
  4. Cited By
Unconstrained Monotonic Neural Networks

Unconstrained Monotonic Neural Networks

14 August 2019
Antoine Wehenkel
Gilles Louppe
    TPM
ArXivPDFHTML

Papers citing "Unconstrained Monotonic Neural Networks"

23 / 23 papers shown
Title
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations
Davide Sartor
Alberto Sinigaglia
Gian Antonio Susto
29
0
0
05 May 2025
TERM Model: Tensor Ring Mixture Model for Density Estimation
TERM Model: Tensor Ring Mixture Model for Density Estimation
Ruituo Wu
Jiani Liu
Ce Zhu
Anh-Huy Phan
Ivan V. Oseledets
Yipeng Liu
24
1
0
13 Dec 2023
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
28
15
0
04 Oct 2023
Risk-Sensitive Policy with Distributional Reinforcement Learning
Risk-Sensitive Policy with Distributional Reinforcement Learning
Thibaut Théate
D. Ernst
OffRL
28
5
0
30 Dec 2022
Learning to Optimize with Stochastic Dominance Constraints
Learning to Optimize with Stochastic Dominance Constraints
H. Dai
Yuan Xue
Niao He
B. Wang
Na Li
Dale Schuurmans
Bo Dai
6
6
0
14 Nov 2022
Feature Necessity & Relevancy in ML Classifier Explanations
Feature Necessity & Relevancy in ML Classifier Explanations
Xuanxiang Huang
Martin C. Cooper
António Morgado
Jordi Planes
João Marques-Silva
FAtt
28
18
0
27 Oct 2022
Whitening Convergence Rate of Coupling-based Normalizing Flows
Whitening Convergence Rate of Coupling-based Normalizing Flows
Felix Dräxler
Christoph Schnörr
Ullrich Kothe
34
7
0
25 Oct 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian
  Preserving Flows
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
26
6
0
22 Sep 2022
CheckINN: Wide Range Neural Network Verification in Imandra (Extended)
CheckINN: Wide Range Neural Network Verification in Imandra (Extended)
Remi Desmartin
Grant Passmore
Ekaterina Komendantskaya
M. Daggitt
13
5
0
21 Jul 2022
AUTM Flow: Atomic Unrestricted Time Machine for Monotonic Normalizing
  Flows
AUTM Flow: Atomic Unrestricted Time Machine for Monotonic Normalizing Flows
Difeng Cai
Yuliang Ji
Huan He
Q. Ye
Yuanzhe Xi
TPM
12
4
0
05 Jun 2022
Efficient Reinforcement Learning from Demonstration Using Local Ensemble
  and Reparameterization with Split and Merge of Expert Policies
Efficient Reinforcement Learning from Demonstration Using Local Ensemble and Reparameterization with Split and Merge of Expert Policies
Yu Wang
Fang Liu
11
0
0
23 May 2022
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal
  Optimization adjoint with Moving Speed
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed
Shian Du
Yihong Luo
Wei-Neng Chen
Jian Xu
Delu Zeng
14
6
0
19 Mar 2022
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem
  Provers
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem Provers
M. Daggitt
Wen Kokke
R. Atkey
Luca Arnaboldi
Ekaterina Komendantskaya
11
5
0
10 Feb 2022
Global Optimization Networks
Global Optimization Networks
Sen Zhao
Erez Louidor Ilan
Oleksandr Mangylov
Maya R. Gupta
18
5
0
02 Feb 2022
Triangular Flows for Generative Modeling: Statistical Consistency,
  Smoothness Classes, and Fast Rates
Triangular Flows for Generative Modeling: Statistical Consistency, Smoothness Classes, and Fast Rates
N. J. Irons
M. Scetbon
Soumik Pal
Zaïd Harchaoui
20
17
0
31 Dec 2021
Sparse Flows: Pruning Continuous-depth Models
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
8
16
0
24 Jun 2021
A deep generative model for probabilistic energy forecasting in power
  systems: normalizing flows
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Jonathan Dumas
Antoine Wehenkel
Bertrand Cornélusse
Antonio Sutera
AI4TS
24
81
0
17 Jun 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
36
477
0
08 Mar 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
17
49
0
09 Feb 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
112
95
0
10 Dec 2020
Variational Disentanglement for Rare Event Modeling
Variational Disentanglement for Rare Event Modeling
Zidi Xiu
Chenyang Tao
M. Gao
Connor Davis
B. Goldstein
Ricardo Henao
CML
DRL
16
6
0
17 Sep 2020
Counterexample-Guided Learning of Monotonic Neural Networks
Counterexample-Guided Learning of Monotonic Neural Networks
Aishwarya Sivaraman
G. Farnadi
T. Millstein
Guy Van den Broeck
16
50
0
16 Jun 2020
Consistent and Flexible Selectivity Estimation for High-Dimensional Data
Consistent and Flexible Selectivity Estimation for High-Dimensional Data
Yaoshu Wang
Chuan Xiao
Jianbin Qin
Rui Mao
Onizuka Makoto
Wei Wang
Rui Zhang
Yoshiharu Ishikawa
17
14
0
20 May 2020
1