Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.05767
Cited By
Experimental performance of graph neural networks on random instances of max-cut
15 August 2019
Weichi Yao
Afonso S. Bandeira
Soledad Villar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Experimental performance of graph neural networks on random instances of max-cut"
20 / 20 papers shown
Title
An Unsupervised Learning Framework Combined with Heuristics for the Maximum Minimal Cut Problem
Huaiyuan Liu
Xianzhang Liu
Donghua Yang
Hongzhi Wang
Yingchi Long
Mengtong Ji
Dongjing Miao
Zhiyu Liang
15
0
0
16 Aug 2024
A Benchmark for Maximum Cut: Towards Standardization of the Evaluation of Learned Heuristics for Combinatorial Optimization
Ankur Nath
Alan Kuhnle
CML
47
0
0
14 Jun 2024
A Unified Pre-training and Adaptation Framework for Combinatorial Optimization on Graphs
Ruibin Zeng
Minglong Lei
Lingfeng Niu
Lan Cheng
AI4CE
19
0
0
16 Dec 2023
Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods
C. Caramanis
Dimitris Fotakis
Alkis Kalavasis
Vasilis Kontonis
Christos Tzamos
11
5
0
08 Oct 2023
Controlling Continuous Relaxation for Combinatorial Optimization
Yuma Ichikawa
22
4
0
29 Sep 2023
Monte Carlo Policy Gradient Method for Binary Optimization
Cheng Chen
Ruitao Chen
Tian-cheng Li
Ruicheng Ao
Zaiwen Wen
13
3
0
03 Jul 2023
Towards fully covariant machine learning
Soledad Villar
D. Hogg
Weichi Yao
George A. Kevrekidis
Bernhard Schölkopf
AI4CE
30
10
0
31 Jan 2023
Unsupervised Learning for Combinatorial Optimization Needs Meta-Learning
Hao Wang
Pan Li
11
14
0
08 Jan 2023
Learning Feasibility of Factored Nonlinear Programs in Robotic Manipulation Planning
Joaquim Ortiz de Haro
Jung-Su Ha
Danny Driess
E. Karpas
Marc Toussaint
19
2
0
22 Oct 2022
Annealed Training for Combinatorial Optimization on Graphs
Haoran Sun
E. Guha
H. Dai
11
18
0
23 Jul 2022
Unsupervised Learning for Combinatorial Optimization with Principled Objective Relaxation
Haoyu Wang
Nan Wu
Hang Yang
Cong Hao
Pan Li
19
29
0
13 Jul 2022
Graph neural network initialisation of quantum approximate optimisation
Nishant Jain
Brian Coyle
E. Kashefi
N. Kumar
GNN
AI4CE
17
48
0
04 Nov 2021
Combinatorial Optimization with Physics-Inspired Graph Neural Networks
M. Schuetz
J. K. Brubaker
H. Katzgraber
AI4CE
20
174
0
02 Jul 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
30
346
0
18 Feb 2021
The Power of Graph Convolutional Networks to Distinguish Random Graph Models: Short Version
A. Magner
Mayank Baranwal
Alfred Hero
GNN
9
13
0
13 Feb 2020
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
37
319
0
10 Feb 2020
Fundamental Limits of Deep Graph Convolutional Networks
A. Magner
Mayank Baranwal
Alfred Hero
GNN
12
7
0
28 Oct 2019
Graph Neural Networks for Maximum Constraint Satisfaction
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
NAI
AI4CE
8
56
0
18 Sep 2019
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
236
3,234
0
24 Nov 2016
1