Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1908.07643
Cited By
v1
v2 (latest)
AdaCliP: Adaptive Clipping for Private SGD
20 August 2019
Venkatadheeraj Pichapati
A. Suresh
Felix X. Yu
Sashank J. Reddi
Sanjiv Kumar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"AdaCliP: Adaptive Clipping for Private SGD"
50 / 62 papers shown
Title
Rethinking Layer-wise Gaussian Noise Injection: Bridging Implicit Objectives and Privacy Budget Allocation
Qifeng Tan
Shusen Yang
Xuebin Ren
Yikai Zhang
123
0
0
04 Sep 2025
Towards Reliable and Generalizable Differentially Private Machine Learning (Extended Version)
Wenxuan Bao
Vincent Bindschaedler
AAML
228
0
0
21 Aug 2025
Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning
Afshin Khadangi
Amir Sartipi
Xiaohui Wu
Ramin Bahmani
Gilbert Fridgen
116
0
0
30 Jul 2025
GeoClip: Geometry-Aware Clipping for Differentially Private SGD
Atefeh Gilani
Naima Tasnim
Lalitha Sankar
O. Kosut
168
1
0
06 Jun 2025
Fast Fourier Transform-Based Spectral and Temporal Gradient Filtering for Differential Privacy
Hyeju Shin
Kyudan Jung
Kyudan Jung
Seongwon Yun
315
0
0
07 May 2025
Adaptive Clipping for Privacy-Preserving Few-Shot Learning: Enhancing Generalization with Limited Data
Kanishka Ranaweera
Dinh C. Nguyen
P. Pathirana
David B. Smith
Ming Ding
Thierry Rakotoarivelo
A. Seneviratne
199
1
0
27 Mar 2025
Video-DPRP: A Differentially Private Approach for Visual Privacy-Preserving Video Human Activity Recognition
Allassan Tchangmena A Nken
Susan Mckeever
Peter Corcoran
Ihsan Ullah
PICV
362
0
0
03 Mar 2025
Structure-Preference Enabled Graph Embedding Generation under Differential Privacy
IEEE International Conference on Data Engineering (ICDE), 2025
Sen Zhang
Qingqing Ye
Haibo Hu
198
1
0
08 Jan 2025
SeqMIA: Sequential-Metric Based Membership Inference Attack
Hao Li
Zheng Li
Siyuan Wu
Chengrui Hu
Yutong Ye
Min Zhang
Dengguo Feng
Yang Zhang
188
24
0
21 Jul 2024
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
Haichao Sha
Ruixuan Liu
Yi-xiao Liu
Hong Chen
247
2
0
06 Dec 2023
Spectral-DP: Differentially Private Deep Learning through Spectral Perturbation and Filtering
IEEE Symposium on Security and Privacy (IEEE S&P), 2023
Ce Feng
Nuo Xu
Wujie Wen
Parv Venkitasubramaniam
Caiwen Ding
157
5
0
25 Jul 2023
PLAN: Variance-Aware Private Mean Estimation
Proceedings on Privacy Enhancing Technologies (PoPETs), 2023
Martin Aumüller
C. Lebeda
Boel Nelson
Rasmus Pagh
FedML
232
5
0
14 Jun 2023
DPMLBench: Holistic Evaluation of Differentially Private Machine Learning
Conference on Computer and Communications Security (CCS), 2023
Chengkun Wei
Ming-Hui Zhao
Zhikun Zhang
Min Chen
Wenlong Meng
Bodong Liu
Yuan-shuo Fan
Wenzhi Chen
345
16
0
10 May 2023
Quantifying and Defending against Privacy Threats on Federated Knowledge Graph Embedding
The Web Conference (WWW), 2023
Yuke Hu
Wei Liang
Ruofan Wu
Kai Y. Xiao
Weiqiang Wang
Xiaochen Li
Jinfei Liu
Zhan Qin
172
16
0
06 Apr 2023
U-Clip: On-Average Unbiased Stochastic Gradient Clipping
Bryn Elesedy
Marcus Hutter
163
2
0
06 Feb 2023
Mitigating Memorization of Noisy Labels by Clipping the Model Prediction
International Conference on Machine Learning (ICML), 2022
Jianguo Huang
Huiping Zhuang
Renchunzi Xie
Lei Feng
Gang Niu
Bo An
Shouqing Yang
VLM
NoLa
446
43
0
08 Dec 2022
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping
International Conference on Learning Representations (ICLR), 2022
Jiyan He
Xuechen Li
Da Yu
Huishuai Zhang
Janardhan Kulkarni
Y. Lee
A. Backurs
Nenghai Yu
Jiang Bian
333
57
0
03 Dec 2022
Differentially Private Learning with Per-Sample Adaptive Clipping
AAAI Conference on Artificial Intelligence (AAAI), 2022
Tianyu Xia
Shuheng Shen
Su Yao
Xinyi Fu
Ke Xu
Xiaolong Xu
Xingbo Fu
459
27
0
01 Dec 2022
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
223
10
0
24 Nov 2022
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
359
15
0
21 Nov 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Conference on Computer and Communications Security (CCS), 2022
Jianxin Wei
Ergute Bao
X. Xiao
Yifan Yang
336
28
0
18 Oct 2022
Dynamic Global Sensitivity for Differentially Private Contextual Bandits
ACM Conference on Recommender Systems (RecSys), 2022
Huazheng Wang
Dave Zhao
Hongning Wang
195
6
0
30 Aug 2022
(Nearly) Optimal Private Linear Regression via Adaptive Clipping
Prateeksha Varshney
Abhradeep Thakurta
Prateek Jain
172
9
0
11 Jul 2022
Normalized/Clipped SGD with Perturbation for Differentially Private Non-Convex Optimization
Xiaodong Yang
Huishuai Zhang
Wei Chen
Tie-Yan Liu
185
40
0
27 Jun 2022
On Privacy and Personalization in Cross-Silo Federated Learning
Neural Information Processing Systems (NeurIPS), 2022
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
279
69
0
16 Jun 2022
Disparate Impact in Differential Privacy from Gradient Misalignment
International Conference on Learning Representations (ICLR), 2022
Maria S. Esipova
Atiyeh Ashari Ghomi
Yaqiao Luo
Jesse C. Cresswell
259
41
0
15 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Neural Information Processing Systems (NeurIPS), 2022
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
550
96
0
14 Jun 2022
Differentially Private Covariance Revisited
Neural Information Processing Systems (NeurIPS), 2022
Wei Dong
Yuting Liang
K. Yi
FedML
306
19
0
28 May 2022
Large Scale Transfer Learning for Differentially Private Image Classification
Harsh Mehta
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
212
48
0
06 May 2022
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
SIAM Journal on Optimization (SIAM J. Optim.), 2022
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
197
20
0
06 Apr 2022
Statistic Selection and MCMC for Differentially Private Bayesian Estimation
Statistics and computing (Stat. Comput.), 2022
Barış Alparslan
S. Yıldırım
227
3
0
24 Mar 2022
Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)
Neural Information Processing Systems (NeurIPS), 2022
Jiayuan Ye
Reza Shokri
FedML
262
56
0
10 Mar 2022
Private Adaptive Optimization with Side Information
International Conference on Machine Learning (ICML), 2022
Tian Li
Manzil Zaheer
Sashank J. Reddi
Virginia Smith
168
43
0
12 Feb 2022
Toward Training at ImageNet Scale with Differential Privacy
Alexey Kurakin
Shuang Song
Steve Chien
Roxana Geambasu
Seth Neel
Abhradeep Thakurta
304
111
0
28 Jan 2022
Gradient Leakage Attack Resilient Deep Learning
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2021
Wenqi Wei
Ling Liu
SILM
PILM
AAML
178
61
0
25 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
363
7
0
01 Dec 2021
Universal Private Estimators
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), 2021
Wei Dong
K. Yi
309
22
0
04 Nov 2021
Dynamic Differential-Privacy Preserving SGD
Jian Du
Song Li
Xiangyi Chen
Siheng Chen
Mingyi Hong
172
41
0
30 Oct 2021
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
International Conference on Machine Learning (ICML), 2021
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
453
16
0
22 Oct 2021
DPNAS: Neural Architecture Search for Deep Learning with Differential Privacy
Anda Cheng
Jiaxing Wang
Xi Sheryl Zhang
Qiang Chen
Peisong Wang
Jian Cheng
261
33
0
16 Oct 2021
NanoBatch Privacy: Enabling fast Differentially Private learning on the IPU
Edward H. Lee
M. M. Krell
Alexander Tsyplikhin
Victoria Rege
E. Colak
Kristen W. Yeom
FedML
135
0
0
24 Sep 2021
Efficient Hyperparameter Optimization for Differentially Private Deep Learning
Aman Priyanshu
Rakshit Naidu
Fatemehsadat Mireshghallah
Mohammad Malekzadeh
178
9
0
09 Aug 2021
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
223
146
0
03 Aug 2021
Private Adaptive Gradient Methods for Convex Optimization
International Conference on Machine Learning (ICML), 2021
Hilal Asi
John C. Duchi
Alireza Fallah
O. Javidbakht
Kunal Talwar
198
58
0
25 Jun 2021
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy
International Conference on Machine Learning (ICML), 2021
Xinwei Zhang
Xiangyi Chen
Min-Fong Hong
Zhiwei Steven Wu
Jinfeng Yi
FedML
191
118
0
25 Jun 2021
Instance-optimal Mean Estimation Under Differential Privacy
Neural Information Processing Systems (NeurIPS), 2021
Ziyue Huang
Yuting Liang
K. Yi
175
65
0
01 Jun 2021
Quantifying and Localizing Usable Information Leakage from Neural Network Gradients
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Soteris Demetriou
Deniz Gündüz
Hamed Haddadi
FedML
175
5
0
28 May 2021
DataLens: Scalable Privacy Preserving Training via Gradient Compression and Aggregation
Conference on Computer and Communications Security (CCS), 2021
Wei Ping
Fan Wu
Yunhui Long
Luka Rimanic
Ce Zhang
Yue Liu
FedML
594
73
0
20 Mar 2021
Label Leakage and Protection in Two-party Split Learning
International Conference on Learning Representations (ICLR), 2021
Oscar Li
Jiankai Sun
Xin Yang
Weihao Gao
Hongyi Zhang
Junyuan Xie
Virginia Smith
Chong-Jun Wang
FedML
299
162
0
17 Feb 2021
N-grams Bayesian Differential Privacy
Osman Ramadan
James Withers
Douglas Orr
101
0
0
29 Jan 2021
1
2
Next