ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.07896
  4. Cited By
Enabling hyperparameter optimization in sequential autoencoders for
  spiking neural data
v1v2 (latest)

Enabling hyperparameter optimization in sequential autoencoders for spiking neural data

21 August 2019
Mohammad Reza Keshtkaran
C. Pandarinath
ArXiv (abs)PDFHTML

Papers citing "Enabling hyperparameter optimization in sequential autoencoders for spiking neural data"

14 / 14 papers shown
Title
Brain-to-Text Benchmark '24: Lessons Learned
Brain-to-Text Benchmark '24: Lessons Learned
Francis R. Willett
Jingyuan Li
Trung Le
Chaofei Fan
Mingfei Chen
...
Maxwell Kounga
E. Kelly Buchanan
D. Zoltowski
Scott W. Linderman
Jaimie M. Henderson
60
1
0
23 Dec 2024
Diffusion-Based Generation of Neural Activity from Disentangled Latent
  Codes
Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes
Jonathan D. McCart
Andrew R. Sedler
Christopher Versteeg
Domenick M. Mifsud
Mattia Rigotti-Thompson
C. Pandarinath
DiffMSyDa
71
1
0
30 Jul 2024
Towards a "universal translator" for neural dynamics at single-cell,
  single-spike resolution
Towards a "universal translator" for neural dynamics at single-cell, single-spike resolution
Yizi Zhang
Yanchen Wang
Donato Jimenez-Beneto
Zixuan Wang
Mehdi Azabou
...
Olivier Winter
The International Brain Laboratory
Eva L. Dyer
Liam Paninski
Cole Hurwitz
MedImAI4CE
72
14
0
19 Jul 2024
Latent Diffusion for Neural Spiking Data
Latent Diffusion for Neural Spiking Data
J. Kapoor
Auguste Schulz
Julius Vetter
Felix Pei
Richard Gao
Jakob H. Macke
DiffM
59
3
0
27 Jun 2024
Embedding-Aligned Language Models
Embedding-Aligned Language Models
Guy Tennenholtz
Yinlam Chow
Chih-Wei Hsu
Lior Shani
Ethan Liang
Craig Boutilier
AIFin
136
2
0
24 May 2024
Predictive variational autoencoder for learning robust representations
  of time-series data
Predictive variational autoencoder for learning robust representations of time-series data
Julia Huiming Wang
Dexter Tsin
Tatiana Engel
CMLOODAI4TS
77
2
0
12 Dec 2023
lfads-torch: A modular and extensible implementation of latent factor
  analysis via dynamical systems
lfads-torch: A modular and extensible implementation of latent factor analysis via dynamical systems
Andrew R. Sedler
C. Pandarinath
67
8
0
03 Sep 2023
Decomposed Linear Dynamical Systems (dLDS) for learning the latent
  components of neural dynamics
Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
Noga Mudrik
Yenho Chen
Eva Yezerets
Christopher Rozell
Adam S. Charles
87
16
0
07 Jun 2022
A survey on multi-objective hyperparameter optimization algorithms for
  Machine Learning
A survey on multi-objective hyperparameter optimization algorithms for Machine Learning
A. Hernández
I. Nieuwenhuyse
Sebastian Rojas Gonzalez
72
103
0
23 Nov 2021
Deep inference of latent dynamics with spatio-temporal super-resolution
  using selective backpropagation through time
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
Feng Zhu
Andrew R. Sedler
Harrison A. Grier
Nauman Ahad
Mark A. Davenport
Matthew T. Kaufman
Andrea Giovannucci
C. Pandarinath
69
10
0
29 Oct 2021
Neural Latents Benchmark '21: Evaluating latent variable models of
  neural population activity
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
296
90
0
09 Sep 2021
Representation learning for neural population activity with Neural Data
  Transformers
Representation learning for neural population activity with Neural Data Transformers
Joel Ye
C. Pandarinath
AI4TSAI4CE
230
57
0
02 Aug 2021
Learning identifiable and interpretable latent models of
  high-dimensional neural activity using pi-VAE
Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
Ding Zhou
Xue-Xin Wei
DRL
260
84
0
09 Nov 2020
An Asymptotically Optimal Multi-Armed Bandit Algorithm and
  Hyperparameter Optimization
An Asymptotically Optimal Multi-Armed Bandit Algorithm and Hyperparameter Optimization
Yimin Huang
Yujun Li
Hanrong Ye
Zhenguo Li
Zhihua Zhang
60
7
0
11 Jul 2020
1