Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.11133
Cited By
On the rate of convergence of fully connected very deep neural network regression estimates
29 August 2019
Michael Kohler
S. Langer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the rate of convergence of fully connected very deep neural network regression estimates"
10 / 10 papers shown
Title
How Neural Networks Learn the Support is an Implicit Regularization Effect of SGD
Pierfrancesco Beneventano
Andrea Pinto
Tomaso A. Poggio
MLT
32
1
0
17 Jun 2024
Soft Label PU Learning
Puning Zhao
Jintao Deng
Xu Cheng
18
0
0
03 May 2024
Analysis of the expected
L
2
L_2
L
2
error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
36
3
0
24 Nov 2023
Semiparametric Regression for Spatial Data via Deep Learning
Kexuan Li
Jun Zhu
A. Ives
V. Radeloff
Fangfang Wang
28
8
0
10 Jan 2023
Precision Machine Learning
Eric J. Michaud
Ziming Liu
Max Tegmark
24
34
0
24 Oct 2022
A Deep Generative Approach to Conditional Sampling
Xingyu Zhou
Yuling Jiao
Jin Liu
Jian Huang
10
41
0
19 Oct 2021
Convergence rates of deep ReLU networks for multiclass classification
Thijs Bos
Johannes Schmidt-Hieber
24
22
0
02 Aug 2021
Calibrating multi-dimensional complex ODE from noisy data via deep neural networks
Kexuan Li
Fangfang Wang
Ruiqi Liu
Fan Yang
Zuofeng Shang
29
7
0
07 Jun 2021
Layer Sparsity in Neural Networks
Mohamed Hebiri
Johannes Lederer
36
10
0
28 Jun 2020
On Deep Instrumental Variables Estimate
Ruiqi Liu
Zuofeng Shang
Guang Cheng
26
26
0
30 Apr 2020
1