ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.02321
  4. Cited By
The application of Convolutional Neural Networks to Detect Slow,
  Sustained Deformation in InSAR Timeseries

The application of Convolutional Neural Networks to Detect Slow, Sustained Deformation in InSAR Timeseries

Geophysical Research Letters (GRL), 2019
5 September 2019
Qirui Yang
Juliet Biggs
F. Albino
D. Bull
ArXiv (abs)PDFHTML

Papers citing "The application of Convolutional Neural Networks to Detect Slow, Sustained Deformation in InSAR Timeseries"

3 / 3 papers shown
Title
Hephaestus: A large scale multitask dataset towards InSAR understanding
Hephaestus: A large scale multitask dataset towards InSAR understanding
Nikolaos Ioannis Bountos
Ioannis Papoutsis
Dimitrios Michail
Andreas Karavias
P. Elias
I. Parcharidis
150
17
0
20 Apr 2022
Deep Learning Meets SAR
Deep Learning Meets SAR
Xiaoxiang Zhu
S. Montazeri
Mohsin Ali
Yuansheng Hua
Yuanyuan Wang
Lichao Mou
Yilei Shi
Feng Xu
R. Bamler
215
266
0
17 Jun 2020
Deep Learning Framework for Detecting Ground Deformation in the Built
  Environment using Satellite InSAR data
Deep Learning Framework for Detecting Ground Deformation in the Built Environment using Satellite InSAR data
Qirui Yang
Juliet Biggs
K. Kelevitz
Z. Sadeghi
T. Wright
James Thompson
A. Achim
David Bull
103
3
0
07 May 2020
1