ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.04719
11
1

Neural Belief Reasoner

10 September 2019
Haifeng Qian
    NAI
    BDL
ArXivPDFHTML
Abstract

This paper proposes a new generative model called neural belief reasoner (NBR). It differs from previous models in that it specifies a belief function rather than a probability distribution. Its implementation consists of neural networks, fuzzy-set operations and belief-function operations, and query-answering, sample-generation and training algorithms are presented. This paper studies NBR in two tasks. The first is a synthetic unsupervised-learning task, which demonstrates NBR's ability to perform multi-hop reasoning, reasoning with uncertainty and reasoning about conflicting information. The second is supervised learning: a robust MNIST classifier for 4 and 9, which is the most challenging pair of digits. This classifier needs no adversarial training, and it substantially exceeds the state of the art in adversarial robustness as measured by the L2 metric, while at the same time maintains 99.1% accuracy on natural images.

View on arXiv
Comments on this paper