Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.04746
Cited By
Tighter Theory for Local SGD on Identical and Heterogeneous Data
10 September 2019
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tighter Theory for Local SGD on Identical and Heterogeneous Data"
50 / 95 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
30
0
0
12 May 2025
Learning Critically: Selective Self Distillation in Federated Learning on Non-IID Data
Yuting He
Yiqiang Chen
Xiaodong Yang
H. Yu
Yi-Hua Huang
Yang Gu
FedML
55
20
0
20 Apr 2025
Achieving Tighter Finite-Time Rates for Heterogeneous Federated Stochastic Approximation under Markovian Sampling
Feng Zhu
Aritra Mitra
Robert W. Heath
FedML
36
0
0
15 Apr 2025
EDiT: A Local-SGD-Based Efficient Distributed Training Method for Large Language Models
Jialiang Cheng
Ning Gao
Yun Yue
Zhiling Ye
Jiadi Jiang
Jian Sha
OffRL
77
0
0
10 Dec 2024
Distributed Sign Momentum with Local Steps for Training Transformers
Shuhua Yu
Ding Zhou
Cong Xie
An Xu
Zhi-Li Zhang
Xin Liu
S. Kar
66
0
0
26 Nov 2024
Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information
Emanuel Buttaci
Giuseppe Carlo Calafiore
FedML
27
0
0
07 Oct 2024
On the Convergence of a Federated Expectation-Maximization Algorithm
Zhixu Tao
Rajita Chandak
Sanjeev R. Kulkarni
FedML
30
0
0
11 Aug 2024
A New Theoretical Perspective on Data Heterogeneity in Federated Optimization
Jiayi Wang
Shiqiang Wang
Rong-Rong Chen
Mingyue Ji
FedML
30
1
0
22 Jul 2024
The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication
Kumar Kshitij Patel
Margalit Glasgow
Ali Zindari
Lingxiao Wang
Sebastian U. Stich
Ziheng Cheng
Nirmit Joshi
Nathan Srebro
46
6
0
19 May 2024
Rendering Wireless Environments Useful for Gradient Estimators: A Zero-Order Stochastic Federated Learning Method
Elissa Mhanna
Mohamad Assaad
41
1
0
30 Jan 2024
Kimad: Adaptive Gradient Compression with Bandwidth Awareness
Jihao Xin
Ivan Ilin
Shunkang Zhang
Marco Canini
Peter Richtárik
32
2
0
13 Dec 2023
ALI-DPFL: Differentially Private Federated Learning with Adaptive Local Iterations
Xinpeng Ling
Jie Fu
Kuncan Wang
Haitao Liu
Zhili Chen
FedML
26
2
0
21 Aug 2023
Benchmarking Algorithms for Federated Domain Generalization
Ruqi Bai
S. Bagchi
David I. Inouye
FedML
34
12
0
11 Jul 2023
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
19
3
0
08 Jun 2023
Cooperative Hardware-Prompt Learning for Snapshot Compressive Imaging
Jiamian Wang
Zong-Jhe Wu
Yulun Zhang
Xin Yuan
Tao R. Lin
Zhiqiang Tao
FedML
51
3
0
01 Jun 2023
Clip21: Error Feedback for Gradient Clipping
Sarit Khirirat
Eduard A. Gorbunov
Samuel Horváth
Rustem Islamov
Fakhri Karray
Peter Richtárik
27
10
0
30 May 2023
DualFL: A Duality-based Federated Learning Algorithm with Communication Acceleration in the General Convex Regime
Jongho Park
Jinchao Xu
FedML
47
1
0
17 May 2023
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling
Nicolò Dal Fabbro
A. Mitra
George J. Pappas
FedML
35
12
0
14 May 2023
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
Kfir Y. Levy
Kfir Y. Levy
FedML
43
2
0
09 Apr 2023
Federated Gradient Matching Pursuit
Halyun Jeong
Deanna Needell
Jing Qin
FedML
35
1
0
20 Feb 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
26
10
0
15 Feb 2023
Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity
Han Wang
A. Mitra
Hamed Hassani
George J. Pappas
James Anderson
FedML
26
21
0
04 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
40
6
0
30 Jan 2023
Graph Federated Learning for CIoT Devices in Smart Home Applications
Arash Rasti-Meymandi
S. M. Sheikholeslami
J. Abouei
Konstantinos N. Plataniotis
FedML
19
18
0
29 Dec 2022
When Do Curricula Work in Federated Learning?
Saeed Vahidian
Sreevatsank Kadaveru
Woo-Ram Baek
Weijia Wang
Vyacheslav Kungurtsev
C. L. P. Chen
M. Shah
Bill Lin
FedML
37
11
0
24 Dec 2022
Local Model Reconstruction Attacks in Federated Learning and their Uses
Ilias Driouich
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
FedML
29
2
0
28 Oct 2022
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
R. L. Jin
Jiebo Luo
Tianbao Yang
FedML
47
8
0
26 Oct 2022
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability
Zhao-quan Song
Yitan Wang
Zheng Yu
Licheng Zhang
FedML
23
28
0
15 Oct 2022
On the Performance of Gradient Tracking with Local Updates
Edward Duc Hien Nguyen
Sulaiman A. Alghunaim
Kun Yuan
César A. Uribe
35
19
0
10 Oct 2022
FedMT: Federated Learning with Mixed-type Labels
Qiong Zhang
Jing Peng
Xin Zhang
A. Talhouk
Gang Niu
Xiaoxiao Li
FedML
51
0
0
05 Oct 2022
PersA-FL: Personalized Asynchronous Federated Learning
Taha Toghani
Soomin Lee
César A. Uribe
FedML
34
6
0
03 Oct 2022
Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation
Taha Toghani
César A. Uribe
FedML
35
14
0
03 Oct 2022
On the Stability Analysis of Open Federated Learning Systems
Youbang Sun
H. Fernando
Tianyi Chen
Shahin Shahrampour
FedML
29
1
0
25 Sep 2022
HammingMesh: A Network Topology for Large-Scale Deep Learning
Torsten Hoefler
Tommaso Bonato
Daniele De Sensi
Salvatore Di Girolamo
Shigang Li
Marco Heddes
Jon Belk
Deepak Goel
Miguel Castro
Steve Scott
3DH
GNN
AI4CE
26
20
0
03 Sep 2022
Fast Heterogeneous Federated Learning with Hybrid Client Selection
Guangyuan Shen
D. Gao
Duanxiao Song
Libin Yang
Xukai Zhou
Shirui Pan
W. Lou
Fang Zhou
FedML
29
12
0
10 Aug 2022
Collaborative Linear Bandits with Adversarial Agents: Near-Optimal Regret Bounds
A. Mitra
Arman Adibi
George J. Pappas
Hamed Hassani
44
6
0
06 Jun 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
26
75
0
27 May 2022
Personalized Federated Learning with Server-Side Information
Jaehun Song
Min Hwan Oh
Hyung-Sin Kim
FedML
33
8
0
23 May 2022
Tighter Regret Analysis and Optimization of Online Federated Learning
Dohyeok Kwon
Jonghwan Park
Songnam Hong
26
11
0
13 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
22
10
0
08 May 2022
Local Stochastic Bilevel Optimization with Momentum-Based Variance Reduction
Junyi Li
Feihu Huang
Heng-Chiao Huang
FedML
19
27
0
03 May 2022
SlimFL: Federated Learning with Superposition Coding over Slimmable Neural Networks
Won Joon Yun
Yunseok Kwak
Hankyul Baek
Soyi Jung
Mingyue Ji
M. Bennis
Jihong Park
Joongheon Kim
13
16
0
26 Mar 2022
FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction
Liang Gao
H. Fu
Li Li
Yingwen Chen
Minghua Xu
Chengzhong Xu
FedML
21
242
0
22 Mar 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
27
3
0
22 Mar 2022
Fine-tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning
Lin Zhang
Li Shen
Liang Ding
Dacheng Tao
Ling-Yu Duan
FedML
28
252
0
17 Mar 2022
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
21
46
0
09 Mar 2022
On the Convergence of Clustered Federated Learning
Ma Jie
Guodong Long
Tianyi Zhou
Jing Jiang
Chengqi Zhang
FedML
33
46
0
13 Feb 2022
Communication-Efficient Stochastic Zeroth-Order Optimization for Federated Learning
Wenzhi Fang
Ziyi Yu
Yuning Jiang
Yuanming Shi
Colin N. Jones
Yong Zhou
FedML
76
56
0
24 Jan 2022
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
14
30
0
25 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
36
16
0
05 Dec 2021
1
2
Next