Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.05830
Cited By
Differentially Private Meta-Learning
12 September 2019
Jeffrey Li
M. Khodak
S. Caldas
Ameet Talwalkar
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially Private Meta-Learning"
48 / 48 papers shown
Title
Dyn-D
2
^2
2
P: Dynamic Differentially Private Decentralized Learning with Provable Utility Guarantee
Zehan Zhu
Yan Huang
Xin Wang
Shouling Ji
Jinming Xu
26
0
0
10 May 2025
Adaptive Clipping for Privacy-Preserving Few-Shot Learning: Enhancing Generalization with Limited Data
Kanishka Ranaweera
Dinh C. Nguyen
P. Pathirana
David B. Smith
Ming Ding
Thierry Rakotoarivelo
A. Seneviratne
31
0
0
27 Mar 2025
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
36
11
0
10 Jul 2024
Noise-Aware Differentially Private Regression via Meta-Learning
Ossi Raisa
Stratis Markou
Matthew Ashman
W. Bruinsma
Marlon Tobaben
Antti Honkela
Richard Turner
71
1
0
12 Jun 2024
Privacy Challenges in Meta-Learning: An Investigation on Model-Agnostic Meta-Learning
Mina Rafiei
Mohammadmahdi Maheri
Hamid R. Rabiee
32
0
0
01 Jun 2024
Advancing Explainable AI Toward Human-Like Intelligence: Forging the Path to Artificial Brain
Yongchen Zhou
Richard Jiang
24
2
0
07 Feb 2024
DP-BREM: Differentially-Private and Byzantine-Robust Federated Learning with Client Momentum
Xiaolan Gu
Ming Li
Lishuang Xiong
FedML
30
4
0
22 Jun 2023
Mobilizing Personalized Federated Learning in Infrastructure-Less and Heterogeneous Environments via Random Walk Stochastic ADMM
Ziba Parsons
Fei Dou
Houyi Du
Zheng Song
Jin Lu
32
3
0
25 Apr 2023
Multi-Task Differential Privacy Under Distribution Skew
Walid Krichene
Prateek Jain
Shuang Song
Mukund Sundararajan
Abhradeep Thakurta
Li Zhang
FedML
38
3
0
15 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
36
9
0
02 Feb 2023
Privacy-preserving Decentralized Deep Learning with Multiparty Homomorphic Encryption
Guowen Xu
Guanlin Li
Shangwei Guo
Tianwei Zhang
Hongwei Li
FedML
28
3
0
11 Jul 2022
A Generative Framework for Personalized Learning and Estimation: Theory, Algorithms, and Privacy
Kaan Ozkara
Antonious M. Girgis
Deepesh Data
Suhas Diggavi
FedML
16
3
0
05 Jul 2022
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
22
51
0
16 Jun 2022
Federated learning: Applications, challenges and future directions
Subrato Bharati
Hossain Mondal
Prajoy Podder
V. B. Surya Prasath
FedML
39
53
0
18 May 2022
Secure Distributed/Federated Learning: Prediction-Privacy Trade-Off for Multi-Agent System
Mohamed Ridha Znaidi
Gaurav Gupta
P. Bogdan
FedML
6
1
0
24 Apr 2022
Federated Learning from Only Unlabeled Data with Class-Conditional-Sharing Clients
Nan Lu
Zhao Wang
Xiaoxiao Li
Gang Niu
Qianming Dou
Masashi Sugiyama
FedML
27
39
0
07 Apr 2022
Learning Predictions for Algorithms with Predictions
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
Sergei Vassilvitskii
17
25
0
18 Feb 2022
Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning
A. Bietti
Chen-Yu Wei
Miroslav Dudík
John Langford
Zhiwei Steven Wu
FedML
20
43
0
10 Feb 2022
Transfer Learning In Differential Privacy's Hybrid-Model
Reʾuven Kohen
Or Sheffet
21
6
0
28 Jan 2022
The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning
Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
E. Byon
...
C. Okwudire
Garvesh Raskutti
R. Saigal
Karandeep Singh
Ye Zhisheng
FedML
36
50
0
09 Nov 2021
PRECAD: Privacy-Preserving and Robust Federated Learning via Crypto-Aided Differential Privacy
Xiaolan Gu
Ming Li
Lishuang Xiong
FedML
18
10
0
22 Oct 2021
Private Multi-Task Learning: Formulation and Applications to Federated Learning
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
27
19
0
30 Aug 2021
Learning-to-learn non-convex piecewise-Lipschitz functions
Maria-Florina Balcan
M. Khodak
Dravyansh Sharma
Ameet Talwalkar
19
13
0
19 Aug 2021
Efficient Federated Meta-Learning over Multi-Access Wireless Networks
Sheng Yue
Ju Ren
Jiang Xin
Deyu Zhang
Yaoxue Zhang
W. Zhuang
15
38
0
14 Aug 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
29
100
0
10 Aug 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
411
0
14 Jul 2021
Optimizing the Numbers of Queries and Replies in Federated Learning with Differential Privacy
Yipeng Zhou
Xuezheng Liu
Yao Fu
Di Wu
Chao Li
Shui Yu
FedML
30
2
0
05 Jul 2021
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
M. Khodak
Renbo Tu
Tian Li
Liam Li
Maria-Florina Balcan
Virginia Smith
Ameet Talwalkar
FedML
35
78
0
08 Jun 2021
Federated Few-Shot Learning with Adversarial Learning
Chenyou Fan
Jianwei Huang
FedML
13
29
0
01 Apr 2021
Federated
f
f
f
-Differential Privacy
Qinqing Zheng
Shuxiao Chen
Qi Long
Weijie J. Su
FedML
77
55
0
22 Feb 2021
Collaborative Federated Learning For Healthcare: Multi-Modal COVID-19 Diagnosis at the Edge
A. Qayyum
Kashif Ahmad
Muhammad Ahtazaz Ahsan
Ala I. Al-Fuqaha
Junaid Qadir
FedML
30
187
0
19 Jan 2021
On the Practicality of Differential Privacy in Federated Learning by Tuning Iteration Times
Yao Fu
Yipeng Zhou
Di Wu
Shui Yu
Yonggang Wen
Chao Li
FedML
24
9
0
11 Jan 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
SoK: Training Machine Learning Models over Multiple Sources with Privacy Preservation
Lushan Song
Guopeng Lin
Jiaxuan Wang
Haoqi Wu
Wenqiang Ruan
Weili Han
29
9
0
06 Dec 2020
A Comprehensive Survey on Local Differential Privacy Toward Data Statistics and Analysis
Teng Wang
Xuefeng Zhang
Xuefeng Zhang
Xinyu Yang
14
86
0
11 Oct 2020
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
34
125
0
05 Aug 2020
A Systematic Literature Review on Federated Machine Learning: From A Software Engineering Perspective
Sin Kit Lo
Qinghua Lu
Chen Wang
Hye-Young Paik
Liming Zhu
FedML
45
83
0
22 Jul 2020
Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh
Farzan Farnia
Ramtin Pedarsani
Ali Jadbabaie
FedML
OOD
32
162
0
16 Jun 2020
GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators
Dingfan Chen
Tribhuvanesh Orekondy
Mario Fritz
SyDa
12
183
0
15 Jun 2020
Backdoor Attacks on Federated Meta-Learning
Chien-Lun Chen
L. Golubchik
Marco Paolieri
FedML
6
32
0
12 Jun 2020
A Comprehensive Overview and Survey of Recent Advances in Meta-Learning
Huimin Peng
VLM
OffRL
14
35
0
17 Apr 2020
Personalized Federated Learning: A Meta-Learning Approach
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
FedML
36
561
0
19 Feb 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
74
6,069
0
10 Dec 2019
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
H. Yang
Farokhi Farhad
Shi Jin
Tony Q. S. Quek
H. Vincent Poor
FedML
18
1,561
0
01 Nov 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
30
4,414
0
21 Aug 2019
SoK: Differential Privacies
Damien Desfontaines
Balázs Pejó
31
121
0
04 Jun 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
1