Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.07697
Cited By
Multi-Task Learning for Automotive Foggy Scene Understanding via Domain Adaptation to an Illumination-Invariant Representation
17 September 2019
Naif Alshammari
S. Akçay
T. Breckon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-Task Learning for Automotive Foggy Scene Understanding via Domain Adaptation to an Illumination-Invariant Representation"
6 / 6 papers shown
Title
Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding
Daniel Gehrig
Dengxin Dai
Simon Hecker
Luc Van Gool
35
239
0
03 Aug 2018
Learning to Adapt Structured Output Space for Semantic Segmentation
Yi-Hsuan Tsai
Wei-Chih Hung
S. Schulter
Kihyuk Sohn
Ming-Hsuan Yang
Manmohan Chandraker
OOD
SSeg
75
1,535
0
28 Feb 2018
Semantic Foggy Scene Understanding with Synthetic Data
Daniel Gehrig
Dengxin Dai
Luc Van Gool
65
1,094
0
25 Aug 2017
Pyramid Scene Parsing Network
Hengshuang Zhao
Jianping Shi
Xiaojuan Qi
Xiaogang Wang
Jiaya Jia
VOS
SSeg
127
11,941
0
04 Dec 2016
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
Guosheng Lin
Anton Milan
Chunhua Shen
Ian Reid
AI4TS
SSeg
190
2,835
0
20 Nov 2016
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
290
2,069
0
07 Jun 2016
1